Validating and Testing an Agent-Based Model for the Spread of COVID-19 in Ireland

Elizabeth Hunter, John D. Kelleher

Research output: Contribution to journalArticlepeer-review

Abstract

Agent-based models can be used to better understand the impacts of lifting restrictions or implementing interventions during a pandemic. However, agent-based models are computationally expensive, and running a model of a large population can result in a simulation taking too long to run for the model to be a useful analysis tool during a public health crisis. To reduce computing time and power while running a detailed agent-based model for the spread of COVID-19 in the Republic of Ireland, we introduce a scaling factor that equates 1 agent to 100 people in the population. We present the results from model validation and show that the scaling factor increases the variability in the model output, but the average model results are similar in scaled and un-scaled models of the same population, and the scaled model is able to accurately simulate the number of cases per day in Ireland during the autumn of 2020. We then test the usability of the model by using the model to explore the likely impacts of increasing community mixing when schools reopen after summer holidays.

Original languageEnglish
Article number270
JournalAlgorithms
Volume15
Issue number8
DOIs
Publication statusPublished - Aug 2022

Keywords

  • COVID-19
  • agent-based model
  • epidemiology
  • infectious disease
  • simulation

Fingerprint

Dive into the research topics of 'Validating and Testing an Agent-Based Model for the Spread of COVID-19 in Ireland'. Together they form a unique fingerprint.

Cite this