Using regular languages to explore the representational capacity of recurrent neural architectures

Abhijit Mahalunkar, John D. Kelleher

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The presence of Long Distance Dependencies (LDDs) in sequential data poses significant challenges for computational models. Various recurrent neural architectures have been designed to mitigate this issue. In order to test these state-of-the-art architectures, there is growing need for rich benchmarking datasets. However, one of the drawbacks of existing datasets is the lack of experimental control with regards to the presence and/or degree of LDDs. This lack of control limits the analysis of model performance in relation to the specific challenge posed by LDDs. One way to address this is to use synthetic data having the properties of subregular languages. The degree of LDDs within the generated data can be controlled through the k parameter, length of the generated strings, and by choosing appropriate forbidden strings. In this paper, we explore the capacity of different RNN extensions to model LDDs, by evaluating these models on a sequence of SPk synthesized datasets, where each subsequent dataset exhibits a longer degree of LDD. Even though SPk are simple languages, the presence of LDDs does have significant impact on the performance of recurrent neural architectures, thus making them prime candidate in benchmarking tasks.

Original languageEnglish
Title of host publicationArtificial Neural Networks and Machine Learning – ICANN 2018 - 27th International Conference on Artificial Neural Networks, 2018, Proceedings
EditorsYannis Manolopoulos, Barbara Hammer, Vera Kurkova, Lazaros Iliadis, Ilias Maglogiannis
PublisherSpringer Verlag
Pages189-198
Number of pages10
ISBN (Print)9783030014230
DOIs
Publication statusPublished - 2018
Event27th International Conference on Artificial Neural Networks, ICANN 2018 - Rhodes, Greece
Duration: 4 Oct 20187 Oct 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11141 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference27th International Conference on Artificial Neural Networks, ICANN 2018
Country/TerritoryGreece
CityRhodes
Period4/10/187/10/18

Keywords

  • Long distance dependency
  • Recurrent neural networks
  • Regular languages
  • Sequential models
  • Strictly piecewise languages

Fingerprint

Dive into the research topics of 'Using regular languages to explore the representational capacity of recurrent neural architectures'. Together they form a unique fingerprint.

Cite this