TY - GEN
T1 - Towards A Framework for Privacy-Preserving Pedestrian Analysis
AU - Kunchala, Anil
AU - Bouroche, Melanie
AU - Schoen-Phelan, Bianca
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - The design of pedestrian-friendly infrastructures plays a crucial role in creating sustainable transportation in urban environments. Analyzing pedestrian behaviour in response to existing infrastructure is pivotal to planning, maintaining, and creating more pedestrian-friendly facilities. Many approaches have been proposed to extract such behaviour by applying deep learning models to video data. Video data, however, includes an broad spectrum of privacy-sensitive information about individuals, such as their location at a given time or who they are with. Most of the existing models use privacy-invasive methodologies to track, detect, and analyse individual or group pedestrian behaviour patterns. As a step towards privacy-preserving pedestrian analysis, this paper introduces a framework to anonymize all pedestrians before analyzing their behaviors. The proposed framework leverages recent developments in 3D wireframe reconstruction and digital in-painting to represent pedestrians with quantitative wireframes by removing their images while preserving pose, shape, and background scene context. To evaluate the proposed framework, a generic metric is introduced for each of privacy and utility. Experimental evaluation on widely-used datasets shows that the proposed framework outperforms traditional and state-of-the-art image filtering approaches by generating best privacy utility trade-off.
AB - The design of pedestrian-friendly infrastructures plays a crucial role in creating sustainable transportation in urban environments. Analyzing pedestrian behaviour in response to existing infrastructure is pivotal to planning, maintaining, and creating more pedestrian-friendly facilities. Many approaches have been proposed to extract such behaviour by applying deep learning models to video data. Video data, however, includes an broad spectrum of privacy-sensitive information about individuals, such as their location at a given time or who they are with. Most of the existing models use privacy-invasive methodologies to track, detect, and analyse individual or group pedestrian behaviour patterns. As a step towards privacy-preserving pedestrian analysis, this paper introduces a framework to anonymize all pedestrians before analyzing their behaviors. The proposed framework leverages recent developments in 3D wireframe reconstruction and digital in-painting to represent pedestrians with quantitative wireframes by removing their images while preserving pose, shape, and background scene context. To evaluate the proposed framework, a generic metric is introduced for each of privacy and utility. Experimental evaluation on widely-used datasets shows that the proposed framework outperforms traditional and state-of-the-art image filtering approaches by generating best privacy utility trade-off.
KW - Applications: Social good
UR - http://www.scopus.com/inward/record.url?scp=85149006391&partnerID=8YFLogxK
U2 - 10.1109/WACV56688.2023.00435
DO - 10.1109/WACV56688.2023.00435
M3 - Conference contribution
AN - SCOPUS:85149006391
T3 - Proceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
SP - 4359
EP - 4369
BT - Proceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
Y2 - 3 January 2023 through 7 January 2023
ER -