The use of three-dimensional conjugate CFD to enhance understanding of, and to verify, multi-modal heat transfer in dynamic laboratory test walls

Rakshit Muddu, Tim O'Leary, Ronan Hogan, Anthony James Robinson, Aimee Byrne

Research output: Contribution to conferencePaperpeer-review

Abstract

This work describes the use of conjugate computational fluid dynamics (C-CFD) to simulate controlled laboratory based dynamic heat transfer tests on building components. This study proposes that conjugate CFD simulation can be used to evaluate the influence of combined convective and conductive heat transfer in multi-state building components. To this end, a solid wall and cavity wall were tested with a Calibrated Hotbox and subject to variable temperature conditions leading to combined convective and conductive heat transfer. The varying temperature of the heat source was monitored and used as the input boundary condition in the simulation model, which included a computational domain which encompassed the hot-side air chamber and the wall, including cavity when applicable. It was found acceptable accuracy could be realized with a simplified constant surface heat transfer coefficient with fixed air temperature on the cold air side, which greatly reduced computational effort. The experimental results revealed that the cavity wall experienced a phase lag, peak displacement of 2.9 times higher and decrement factor 1.6 times lower compared with that of the solid wall.
Original languageEnglish
DOIs
Publication statusPublished - 2020
EventCivil Engineering Research in Ireland 2020 -
Duration: 1 Jan 2020 → …

Conference

ConferenceCivil Engineering Research in Ireland 2020
Period1/01/20 → …

Keywords

  • conjugate computational fluid dynamics
  • dynamic heat transfer tests
  • building components
  • convective heat transfer
  • conductive heat transfer
  • Calibrated Hotbox
  • temperature conditions
  • computational domain
  • air chamber
  • cavity wall
  • phase lag
  • peak displacement
  • decrement factor

Fingerprint

Dive into the research topics of 'The use of three-dimensional conjugate CFD to enhance understanding of, and to verify, multi-modal heat transfer in dynamic laboratory test walls'. Together they form a unique fingerprint.

Cite this