TY - JOUR
T1 - Structural features of 1,3,4-thiadiazole-derived ligands and their Zn(II) and Cu(II) complexes which demonstrate synergistic antibacterial effects with kanamycin
AU - Karcz, Dariusz
AU - Matwijczuk, Arkadiusz
AU - Kamiński, Daniel
AU - Creaven, Bernadette
AU - Ciszkowicz, Ewa
AU - Lecka-Szlachta, Katarzyna
AU - Starzak, Karolina
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/8/2
Y1 - 2020/8/2
N2 - Classical synthetic protocols were applied for the isolation of three novel 1,3,4-thiadiazole derivatives which were then complexed with the biologically important Cu(II) and Zn(II) ions. All free ligands and their corresponding complexes were characterized using a number of spectroscopic techniques including Ultraviolet-visible (UV–vis), Fluorescence, Infrared (FT-IR), tandem liquid chromatography-mass (LC-MS), X-ray diffraction (XRD), and Nuclear Magnetic Resonance (NMR) spectroscopy (1 H,13C, HSQC, HMBC). The results obtained are consistent with the formation of dihydrate complexes, in which the chelation of the metal ion occurs via one of the thiadiazole nitrogen atoms and the deprotonated hydroxyl group of the neighboring resorcynyl moiety. The Zn(II) complexes utilize a 1:1 ligand–metal ratio, while in the Cu(II) complexes the ligand–metal ratio is 2:1. Although the antibacterial testing identified moderate activity of the compounds against the tested bacterial strains and additionally modest antioxidant activity, a strong synergistic antibacterial effect against Staphylococcus aureus, using concomitant treatment of thiadiazole derivatives with the commercial antibiotic kanamycin, was observed. The most active thiadiazole derivative demonstrated a minimal inhibitory concentration (MIC) of 500 μg/mL while it was 125 μg/mL in the presence of kanamycin. Moreover, in the presence of few thiadiazole derivatives the MIC value of kanamycin decreased from 0.39 μg/mL to 0.5 μg/mL. The antioxidant activity (IC50) of the most active thiadiazole derivative was determined as 0.13 mM which was nearly three-fold lower compared to that of TROLOX (0.5 mM).
AB - Classical synthetic protocols were applied for the isolation of three novel 1,3,4-thiadiazole derivatives which were then complexed with the biologically important Cu(II) and Zn(II) ions. All free ligands and their corresponding complexes were characterized using a number of spectroscopic techniques including Ultraviolet-visible (UV–vis), Fluorescence, Infrared (FT-IR), tandem liquid chromatography-mass (LC-MS), X-ray diffraction (XRD), and Nuclear Magnetic Resonance (NMR) spectroscopy (1 H,13C, HSQC, HMBC). The results obtained are consistent with the formation of dihydrate complexes, in which the chelation of the metal ion occurs via one of the thiadiazole nitrogen atoms and the deprotonated hydroxyl group of the neighboring resorcynyl moiety. The Zn(II) complexes utilize a 1:1 ligand–metal ratio, while in the Cu(II) complexes the ligand–metal ratio is 2:1. Although the antibacterial testing identified moderate activity of the compounds against the tested bacterial strains and additionally modest antioxidant activity, a strong synergistic antibacterial effect against Staphylococcus aureus, using concomitant treatment of thiadiazole derivatives with the commercial antibiotic kanamycin, was observed. The most active thiadiazole derivative demonstrated a minimal inhibitory concentration (MIC) of 500 μg/mL while it was 125 μg/mL in the presence of kanamycin. Moreover, in the presence of few thiadiazole derivatives the MIC value of kanamycin decreased from 0.39 μg/mL to 0.5 μg/mL. The antioxidant activity (IC50) of the most active thiadiazole derivative was determined as 0.13 mM which was nearly three-fold lower compared to that of TROLOX (0.5 mM).
KW - 1,3,4-thiadiazole
KW - Antibacterial
KW - Antioxidant
KW - Kanamycin
KW - Neurodegeneration
KW - Synergistic effect
KW - Thiadiazole complex
KW - Thiadiazole ligands
UR - http://www.scopus.com/inward/record.url?scp=85089408173&partnerID=8YFLogxK
U2 - 10.3390/ijms21165735
DO - 10.3390/ijms21165735
M3 - Article
C2 - 32785125
AN - SCOPUS:85089408173
SN - 1661-6596
VL - 21
SP - 1
EP - 20
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 16
M1 - 5735
ER -