Abstract
A fibre-optic strain sensor based on a gourd-shaped joint multimode fibre (MMF) sandwiched between two single-mode fibres (SMFs) is described both theoretically and experimentally. The cladding layers of the two MMFs are reshaped to form a hemisphere using an electrical arc method and spliced together, yielding the required gourd shape. The gourd-shaped section forms a Fabry-Perot cavity between the ends of two adjacent but non-contacting multimode fibres’ core. The effectiveness of the multimode interference based on the Fabry-Perot interferometer (FPI) formed within the multimode inter-fibre section is greatly improved resulting in an experimentally determined strain sensitivity of −2.60 pm/με over the range 0—1000 με. The sensing characteristics for temperature and humidity of this optical fibre strain sensor are also investigated.
Original language | English |
---|---|
Pages (from-to) | 18885-18896 |
Number of pages | 12 |
Journal | Optics Express |
Volume | 25 |
Issue number | 16 |
DOIs | |
Publication status | Published - 7 Aug 2017 |