Silicon microcantilever sensors to detect the reversible conformational change of a molecular switch, Spiropyan

Catherine Grogan, George Amarandei, Shauna Lawless, Fran Pedreschi, Fiona Lyng, Fernando Benito-Lopez, Roberto Raiteri, Larisa Florea

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

The high sensitivity of silicon microcantilever sensors has expanded their use in areas ranging from gas sensing to bio-medical applications. Photochromic molecules also represent promising candidates for a large variety of sensing applications. In this work, the operating principles of these two sensing methods are combined in order to detect the reversible conformational change of a molecular switch, spiropyran. Thus, arrays of silicon microcantilever sensors were functionalized with spiropyran on the gold covered side and used as test microcantilevers. The microcantilever deflection response was observed, in five sequential cycles, as the transition from the spiropyran (SP) (CLOSED) to the merocyanine (MC) (OPEN) state and vice-versa when induced by UV and white light LED sources, respectively, proving the reversibility capabilities of this type of sensor. The microcantilever deflection direction was observed to be in one direction when changing to the MC state and in the opposite direction when changing back to the SP state. A tensile stress was induced in the microcantilever when the SP to MC transition took place, while a compressive stress was observed for the reverse transition. These different type of stresses are believed to be related to the spatial conformational changes induced in the photochromic molecule upon photo-isomerisation.

Original languageEnglish
Article number854
JournalSensors
Volume20
Issue number3
DOIs
Publication statusPublished - 1 Feb 2020

Keywords

  • Microcantilever sensor
  • Molecular switch
  • Self-assembled monolayers
  • Spiropyran

Fingerprint

Dive into the research topics of 'Silicon microcantilever sensors to detect the reversible conformational change of a molecular switch, Spiropyan'. Together they form a unique fingerprint.

Cite this