TY - JOUR
T1 - Screen-Printed Sensors Coated with Polyaniline/Molecularly Imprinted Polymer Membranes for the Potentiometric Determination of 2,4-Dichlorophenoxyacetic Acid Herbicide in Wastewater and Agricultural Soil
AU - El-Beshlawy, Menna M.
AU - Abdel-Haleem, Fatehy M.
AU - Kamel, Ayman H.
AU - Barhoum, Ahmed
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2023/1
Y1 - 2023/1
N2 - 2,4-Dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide. However, its residues in agricultural products are extremely harmful to human health and to the environment in soil and water. Previous methods for determining 2,4-D in water and soil samples are expensive, cumbersome, and not highly selective. In this study, we developed a novel disposal sensor based on screen-printed electrodes (SPEs) for detecting 2,4-D in wastewater and soil samples. The SPEs were modified with conductive polyaniline (PANI) layer and polyvinyl chloride (PVC) membrane loaded with molecularly printed polymer (MIP). The MIP particles were prepared using 2,4-D as template, methacrylic acid (MAA) as monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, and benzoyl peroxide as initiator. The best sensor shows a dynamic concentration range of 10−2 to 10−7 M 2,4-D, a detection limit (LOD) of 3.6 × 10−7 M, Nernst slope (response) of 29.9 mV/decade, and high selectivity over other interfering species previously reported in the literature. The sensors also achieved a short response time of 25 s, high reversibility, and a lifetime of over 2 weeks. The developed sensors were successfully used for determining 2,4-D in real wastewater and soil samples with high accuracy and precision.
AB - 2,4-Dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide. However, its residues in agricultural products are extremely harmful to human health and to the environment in soil and water. Previous methods for determining 2,4-D in water and soil samples are expensive, cumbersome, and not highly selective. In this study, we developed a novel disposal sensor based on screen-printed electrodes (SPEs) for detecting 2,4-D in wastewater and soil samples. The SPEs were modified with conductive polyaniline (PANI) layer and polyvinyl chloride (PVC) membrane loaded with molecularly printed polymer (MIP). The MIP particles were prepared using 2,4-D as template, methacrylic acid (MAA) as monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, and benzoyl peroxide as initiator. The best sensor shows a dynamic concentration range of 10−2 to 10−7 M 2,4-D, a detection limit (LOD) of 3.6 × 10−7 M, Nernst slope (response) of 29.9 mV/decade, and high selectivity over other interfering species previously reported in the literature. The sensors also achieved a short response time of 25 s, high reversibility, and a lifetime of over 2 weeks. The developed sensors were successfully used for determining 2,4-D in real wastewater and soil samples with high accuracy and precision.
KW - dichlorophenoxy acetic acid
KW - disposal sensors
KW - herbicide
KW - molecularly imprinted polymer
KW - screen-printed electrodes
KW - wastewater soil
UR - https://www.scopus.com/pages/publications/85146765607
U2 - 10.3390/chemosensors11010003
DO - 10.3390/chemosensors11010003
M3 - Article
AN - SCOPUS:85146765607
SN - 2227-9040
VL - 11
JO - Chemosensors
JF - Chemosensors
IS - 1
M1 - 3
ER -