Safety-Driven Deep Reinforcement Learning Framework for Cobots: A Sim2Real Approach

Ammar N. Abbas, Shakra Mehak, Georgios C. Chasparis, John D. Kelleher, Michael Guilfoyle, Maria Chiara Leva, Aswin K. Ramasubramanian

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This study presents a novel methodology incorporating safety constraints into a robotic simulation during the training of deep reinforcement learning (DRL). The framework integrates specific parts of the safety requirements, such as velocity constraints, as specified by ISO 10218, directly within the DRL model that becomes a part of the robot's learning algorithm. The study then evaluated the efficiency of these safety constraints by subjecting the DRL model to various scenarios, including grasping tasks with and without obstacle avoidance. The validation process involved comprehensive simulation-based testing of the DRL model's responses to potential hazards and its compliance. Also, the performance of the system is carried out by the functional safety standards IEC 61508 to determine the safety integrity level. The study indicated a significant improvement in the safety performance of the robotic system. The proposed DRL model anticipates and mitigates hazards while maintaining operational efficiency. This study was validated in a testbed with a collaborative robotic arm with safety sensors and assessed with metrics such as the average number of safety violations, obstacle avoidance, and the number of successful grasps. The proposed approach outperforms the conventional method by a 16.5% average success rate on the tested scenarios in the simulations and 2.5% in the testbed without safety violations.

Original languageEnglish
Title of host publication10th 2024 International Conference on Control, Decision and Information Technologies, CoDIT 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2917-2923
Number of pages7
ISBN (Electronic)9798350373974
DOIs
Publication statusPublished - 2024
Event10th International Conference on Control, Decision and Information Technologies, CoDIT 2024 - Valletta, Malta
Duration: 1 Jul 20244 Jul 2024

Publication series

Name10th 2024 International Conference on Control, Decision and Information Technologies, CoDIT 2024

Conference

Conference10th International Conference on Control, Decision and Information Technologies, CoDIT 2024
Country/TerritoryMalta
CityValletta
Period1/07/244/07/24

Keywords

  • Collaborative Robots
  • Functional Safety
  • ISO standards
  • Safe Deep Reinforcement Learning

Fingerprint

Dive into the research topics of 'Safety-Driven Deep Reinforcement Learning Framework for Cobots: A Sim2Real Approach'. Together they form a unique fingerprint.

Cite this