TY - JOUR
T1 - Reducing ambient levels of fine particulates could substantially improve health
T2 - A mortality impact assessment for 26 European cities
AU - Ballester, Ferran
AU - Medina, Sylvia
AU - Boldo, Elena
AU - Goodman, Pat
AU - Neuberger, Manfred
AU - Iñiguez, Carmen
AU - Künzli, Nino
PY - 2008/2
Y1 - 2008/2
N2 - Recently new European policies on ambient air quality - namely, the adoption of new standards for fine particulate matter (PM2.5), have generated a broad debate about choosing the air quality standards that can best protect public health. The Apheis network estimated the number of potential premature deaths from all causes that could be prevented by reducing PM 2.5 annual levels to 25 μg/m3, 20 μg/m3, 15 μg/m3 and 10 μg/m3 in 26 European cities. The various PM2.5 concentrations were chosen as different reductions based on the limit values proposed by the new European Directive, the European Parliament, the US Environmental Protection Agency and the World Health Organization, respectively. The Apheis network provided the health and exposure data used in this study. The concentration-response function (CRF) was derived from the paper by Pope et al (2002). If no direct PM2.5 measurements were available, then the PM10 measurements were converted to PM 2.5 using a local or an assumed European conversion factor. We performed a sensitivity analysis using assumptions for two key factors - namely, CRF and the conversion factor for PM2.5. Specifically, using the "at least" approach, in the 26 Apheis cities with more than 40 million inhabitants, reducing annual mean levels of PM2.5 to 15 μg/m 3 could lead to a reduction in the total burden of mortality among people aged 30 years and over that would be four times greater than the reduction in mortality that could be achieved by reducing PM2.5 levels to 25 μg/m3 (1.6% vs 0.4% reduction) and two times greater than a reduction to 20 μg/m3. The percentage reduction could grow by more than seven times if PM2.5 levels were reduced to 10 μg/m3 (3.0% vs 0.4%). This study shows that more stringent standards need to be adopted in Europe to protect public health, as proposed by the scientific community and the World Health Organization.
AB - Recently new European policies on ambient air quality - namely, the adoption of new standards for fine particulate matter (PM2.5), have generated a broad debate about choosing the air quality standards that can best protect public health. The Apheis network estimated the number of potential premature deaths from all causes that could be prevented by reducing PM 2.5 annual levels to 25 μg/m3, 20 μg/m3, 15 μg/m3 and 10 μg/m3 in 26 European cities. The various PM2.5 concentrations were chosen as different reductions based on the limit values proposed by the new European Directive, the European Parliament, the US Environmental Protection Agency and the World Health Organization, respectively. The Apheis network provided the health and exposure data used in this study. The concentration-response function (CRF) was derived from the paper by Pope et al (2002). If no direct PM2.5 measurements were available, then the PM10 measurements were converted to PM 2.5 using a local or an assumed European conversion factor. We performed a sensitivity analysis using assumptions for two key factors - namely, CRF and the conversion factor for PM2.5. Specifically, using the "at least" approach, in the 26 Apheis cities with more than 40 million inhabitants, reducing annual mean levels of PM2.5 to 15 μg/m 3 could lead to a reduction in the total burden of mortality among people aged 30 years and over that would be four times greater than the reduction in mortality that could be achieved by reducing PM2.5 levels to 25 μg/m3 (1.6% vs 0.4% reduction) and two times greater than a reduction to 20 μg/m3. The percentage reduction could grow by more than seven times if PM2.5 levels were reduced to 10 μg/m3 (3.0% vs 0.4%). This study shows that more stringent standards need to be adopted in Europe to protect public health, as proposed by the scientific community and the World Health Organization.
UR - http://www.scopus.com/inward/record.url?scp=38849153576&partnerID=8YFLogxK
U2 - 10.1136/jech.2007.059857
DO - 10.1136/jech.2007.059857
M3 - Article
C2 - 18192596
AN - SCOPUS:38849153576
SN - 0143-005X
VL - 62
SP - 98
EP - 105
JO - Journal of Epidemiology and Community Health
JF - Journal of Epidemiology and Community Health
IS - 2
ER -