Photopolymerizable nanocomposites for holographic recording and sensor application

Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, Vincent Toal

Research output: Contribution to journalArticlepeer-review

80 Citations (Scopus)

Abstract

Novel nanocomposites consisting of a water-soluble acrylamide-based photopolymer and colloidal zeolite nanoparticles of zeolite Beta and zeolite A were prepared. The interactions between the photopolymer components and zeolite nanoparticles in the photopolymerizable nanocomposites were characterized for the first time by 13C nuclear magnetic resonance and visible spectroscopy. It was found that the zeolite Beta nanoparticles (up to 5 wt: %) behave as a noninert additive, resulting in an effective increase in layer thickness, which causes doubling of the diffraction efficiency of the nanocomposite in comparison to that of the undoped photopolymer. On the other hand, the nanocomposite containing zeolite A nanoparticles showed no evidence of interaction with the polymer matrix, had similar values of diffraction efficiency, and-up to a small addition of nanoparticles (up to 2:5 wt: %)-showed slightly higher lightinduced refractive index modulation of the grating when compared to the undoped photopolymer. The good optical compatibility between the zeolite nanoparticles and the polymer allows a versatile design of photopolymerizable nanocomposites with different properties by selecting the adequate type of zeolite. The nanocomposite containing zeolite Beta nanoparticles demonstrates selective sensing behavior toward toluene and can be coated in either glass or plastic substrates and exposed directly to the environmental conditions.

Original languageEnglish
Pages (from-to)3652-3660
Number of pages9
JournalApplied Optics
Volume49
Issue number19
DOIs
Publication statusPublished - 1 Jul 2010

Fingerprint

Dive into the research topics of 'Photopolymerizable nanocomposites for holographic recording and sensor application'. Together they form a unique fingerprint.

Cite this