On Soliton Interactions for a Hierarchy of Generalized Heisenberg Ferromagnetic Models on SU(3)/S(U(1) $\times$ U(2)) Symmetric Space

Vladimir Gerdijkov

Research output: Contribution to journalArticlepeer-review

Abstract

We consider an integrable hierarchy of nonlinear evolution equations (NLEE) related to linear bundle Lax operator L. The Lax representation is Z2 \times Z2 reduced and is naturally associated with the symmetric space SU(3)/S(U(1) \times U(2)). The simplest nontrivial equation in the hierarchy is a generalization of Heisenberg ferromagnetic model. We construct the N-soliton solutions for an arbitrary member of the hierarchy by using the Zakharov-Shabat dressing method with an appropriately chosen dressing factor. Two types of soliton solutions: quadruplet and doublet solitons are found. The one-soliton solutions of NLEEs with even and odd dispersion laws have different properties. In particular, the one-soliton solutions for NLEEs with even dispersion laws are not traveling waves; their velocities and their amplitudes are time dependent. Calculating the asymptotics of the N-soliton solutions for t \rightarrow \pm \infty we analyze the interactions of quadruplet solitons.
Original languageEnglish
Pages (from-to)23-55
JournalJournal of Geometry and Symmetry in Physics
Volume25
DOIs
Publication statusPublished - 1 Mar 2012
Externally publishedYes

Keywords

  • integrable hierarchy
  • nonlinear evolution equations
  • Lax operator
  • symmetric space
  • Heisenberg ferromagnetic model
  • N-soliton solutions
  • Zakharov-Shabat dressing method
  • soliton interactions

Fingerprint

Dive into the research topics of 'On Soliton Interactions for a Hierarchy of Generalized Heisenberg Ferromagnetic Models on SU(3)/S(U(1) $\times$ U(2)) Symmetric Space'. Together they form a unique fingerprint.

Cite this