Numerical modeling and analysis of Ti6Al4V alloy chip for biomedical applications

Waqas Saleem, Bashir Salah, Xavier Velay, Rafiq Ahmad, Razaullah Khan, Catalin I. Pruncu

Research output: Contribution to journalArticlepeer-review

Abstract

The influence of cutting forces during the machining of titanium alloys has attained prime attention in selecting the optimal cutting conditions to improve the surface integrity of medical implants and biomedical devices. So far, it has not been easy to explain the chip morphology of Ti6Al4V and the thermo-mechanical interactions involved during the cutting process. This paper investigates the chip configuration of the Ti6Al4V alloy under dry milling conditions at a macro and micro scale by employing the Johnson-Cook material damage model. 2D modeling, numerical milling simulations, and post-processing were conducted using the Abaqus/Explicit commercial software. The uncut chip geometry was modeled with variable thicknesses to accomplish the macro to micro-scale cutting by adapting a trochoidal path. Numerical results, predicted for the cutting reaction forces and shearing zone temperatures, were found in close approximation to experimental ones with minor deviations. Further analyses evaluated the influence of cutting speeds and contact friction coefficients over the chip flow stress, equivalent plastic strain, and chip morphology. The methodology developed can be implemented in resolving the industrial problems in the biomedical sector for predicting the chip morphology of the Ti6Al4V alloy, fracture mechanisms of hard-to-cut materials, and the effects of different cutting parameters on workpiece integrity.

Original languageEnglish
Article number5236
Pages (from-to)1-17
Number of pages17
JournalMaterials
Volume13
Issue number22
DOIs
Publication statusPublished - 2 Nov 2020

Keywords

  • Chip morphology
  • Johnson-Cook
  • Simulation of cutting processes
  • Ti6Al4V

Fingerprint

Dive into the research topics of 'Numerical modeling and analysis of Ti6Al4V alloy chip for biomedical applications'. Together they form a unique fingerprint.

Cite this