Abstract
A novel ambient pressure microwave assisted technique is developed in which silver and indium-modified ZnS is synthesized. The as-prepared ZnS is characterized by x-ray diffraction, UV-vis spectroscopy, x-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to defects in the crystal which induce mid-energy levels in the band gap and lead to indoor light photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional chamber furnace, it is completely converted to ZnO at 600 °C. Both cubic blende and hexagonal ZnS show excellent photocatalytic activity under irradiation from a 60 W light bulb. These ZnS samples also show significantly higher photocatalytic activity than the commercially available TiO2 (Evonik-Degussa P-25).
| Original language | English |
|---|---|
| Article number | 045704 |
| Journal | Nanotechnology |
| Volume | 24 |
| Issue number | 4 |
| DOIs | |
| Publication status | Published - 1 Feb 2013 |