Multifluid magnetohydrodynamic turbulent decay

T. P. Downes, S. O'Sullivan

    Research output: Contribution to journalArticlepeer-review

    Abstract

    It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvénic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.

    Original languageEnglish
    Article number12
    JournalAstrophysical Journal
    Volume730
    Issue number1
    DOIs
    Publication statusPublished - 20 Mar 2011

    Keywords

    • ISM: kinematics and dynamics
    • ISM: magnetic fields
    • magnetohydrodynamics (MHD)
    • methods: numerical
    • turbulence

    Fingerprint

    Dive into the research topics of 'Multifluid magnetohydrodynamic turbulent decay'. Together they form a unique fingerprint.

    Cite this