Meme Sentiment Analysis Enhanced with Multimodal Spatial Encoding and Face Embedding

Muzhaffar Hazman, Susan McKeever, Josephine Griffith

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Internet memes are characterised by the interspersing of text amongst visual elements. State-of-the-art multimodal meme classifiers do not account for the relative positions of these elements across the two modalities, despite the latent meaning associated with where text and visual elements are placed. Against two meme sentiment classification datasets, we systematically show performance gains from incorporating the spatial position of visual objects, faces, and text clusters extracted from memes. In addition, we also present facial embedding as an impactful enhancement to image representation in a multimodal meme classifier. Finally, we show that incorporating this spatial information allows our fully automated approaches to outperform their corresponding baselines that rely on additional human validation of OCR-extracted text.

Original languageEnglish
Title of host publicationArtificial Intelligence and Cognitive Science - 30th Irish Conference, AICS 2022, Revised Selected Papers
EditorsLuca Longo, Ruairi O’Reilly
PublisherSpringer Science and Business Media Deutschland GmbH
Pages318-331
Number of pages14
ISBN (Print)9783031264375
DOIs
Publication statusPublished - 2023
Event30th Irish Conference on Artificial Intelligence and Cognitive Science, AICS 2022 - Munster, Ireland
Duration: 8 Dec 20229 Dec 2022

Publication series

NameCommunications in Computer and Information Science
Volume1662 CCIS
ISSN (Print)1865-0929
ISSN (Electronic)1865-0937

Conference

Conference30th Irish Conference on Artificial Intelligence and Cognitive Science, AICS 2022
Country/TerritoryIreland
CityMunster
Period8/12/229/12/22

Keywords

  • Internet memes
  • Multimodal deep learning
  • Sentiment analysis

Fingerprint

Dive into the research topics of 'Meme Sentiment Analysis Enhanced with Multimodal Spatial Encoding and Face Embedding'. Together they form a unique fingerprint.

Cite this