TY - JOUR
T1 - Low-resolution models for the interaction dynamics of coated gold nanoparticles with β2-microglobulin
AU - Brancolini, Giorgia
AU - Lopez, Hender
AU - Corni, Stefano
AU - Tozzini, Valentina
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/8/2
Y1 - 2019/8/2
N2 - A large number of low-resolution models have been proposed in the last decades to reduce the computational cost of molecular dynamics simulations for bio-nano systems, such as those involving the interactions of proteins with functionalized nanoparticles (NPs). For the proteins, “minimalist” models at the one-bead-per residue (Cα-based) level and with implicit solvent are well established. For the gold NPs, widely explored for biotechnological applications, mesoscale (MS) models treating the NP core with a single spheroidal object are commonly proposed. In this representation, the surface details (coating, roughness, etc.) are lost. These, however, and the specificity of the functionalization, have been shown to have fundamental roles for the interaction with proteins. We presented a mixed-resolution coarse-grained (CG) model for gold NPs in which the surface chemistry is reintroduced as superficial smaller beads. We compared molecular dynamics simulations of the amyloid β2-microglobulin represented at the minimalist level interacting with NPs represented with this model or at the MS level. Our finding highlights the importance of describing the surface of the NP at a finer level as the chemical-physical properties of the surface of the NP are crucial to correctly understand the protein-nanoparticle association.
AB - A large number of low-resolution models have been proposed in the last decades to reduce the computational cost of molecular dynamics simulations for bio-nano systems, such as those involving the interactions of proteins with functionalized nanoparticles (NPs). For the proteins, “minimalist” models at the one-bead-per residue (Cα-based) level and with implicit solvent are well established. For the gold NPs, widely explored for biotechnological applications, mesoscale (MS) models treating the NP core with a single spheroidal object are commonly proposed. In this representation, the surface details (coating, roughness, etc.) are lost. These, however, and the specificity of the functionalization, have been shown to have fundamental roles for the interaction with proteins. We presented a mixed-resolution coarse-grained (CG) model for gold NPs in which the surface chemistry is reintroduced as superficial smaller beads. We compared molecular dynamics simulations of the amyloid β2-microglobulin represented at the minimalist level interacting with NPs represented with this model or at the MS level. Our finding highlights the importance of describing the surface of the NP at a finer level as the chemical-physical properties of the surface of the NP are crucial to correctly understand the protein-nanoparticle association.
KW - Amyloid proteins
KW - Coarse-grained models
KW - Functionalized metal nanoparticles
KW - Molecular dynamics
KW - Multiscale modeling
UR - http://www.scopus.com/inward/record.url?scp=85071280975&partnerID=8YFLogxK
U2 - 10.3390/ijms20163866
DO - 10.3390/ijms20163866
M3 - Article
C2 - 31398866
AN - SCOPUS:85071280975
SN - 1661-6596
VL - 20
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 16
M1 - 3866
ER -