Lit@EVE: Explainable Recommendation Based on Wikipedia Concept Vectors

M. Atif Qureshi, Derek Greene

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present an explainable recommendation system for novels and authors, called Lit@EVE, which is based on Wikipedia concept vectors. In this system, each novel or author is treated as a concept whose definition is extracted as a concept vector through the application of an explainable word embedding technique called EVE. Each dimension of the concept vector is labelled as either a Wikipedia article or a Wikipedia category name, making the vector representation readily interpretable. In order to recommend items, the Lit@EVE system uses these vectors to compute similarity scores between a target novel or author and all other candidate items. Finally, the system generates an ordered list of suggested items by showing the most informative features as human-readable labels, thereby making the recommendation explainable.

Original languageEnglish
Title of host publicationMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Proceedings
EditorsMichelangelo Ceci, Saso Dzeroski, Donato Malerba, Yasemin Altun, Kamalika Das, Jesse Read, Marinka Zitnik, Jerzy Stefanowski, Taneli Mielikäinen
PublisherSpringer Verlag
Pages409-413
Number of pages5
ISBN (Print)9783319712727
DOIs
Publication statusPublished - 2017
Externally publishedYes
EventEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2017 - Skopje, Macedonia, The Former Yugoslav Republic of
Duration: 18 Sep 201722 Sep 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10536 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2017
Country/TerritoryMacedonia, The Former Yugoslav Republic of
CitySkopje
Period18/09/1722/09/17

Fingerprint

Dive into the research topics of 'Lit@EVE: Explainable Recommendation Based on Wikipedia Concept Vectors'. Together they form a unique fingerprint.

Cite this