Abstract
The application of nematic liquid crystal infiltrated photonic crystal fiber as a sensor for electric field intensity measurement is demonstrated. The device is based on an intrinsic sensing mechanism for electric fields. The sensor probe, which consists of a 1 cm infiltrated section of photonic crystal fiber with a lateral size of ̃125 μm, is very compact with small size and weight. A simple all-fiber design for the sensor is employed in an intensity based measurement scheme. The transmitted and reflected power of the infiltrated photonic crystal fiber is shown to have a linear response with the applied electric field. The sensor is operated in the telecommunication window at 1550 nm. The temperature dependence of the device at this operating wavelength is also experimentally studied and discussed. These structures can be used to accurately measure electric field intensity and can be used for the fabrication of all-fiber sensors for high electric field environments as both an in-line and reflective type point sensor.
Original language | English |
---|---|
Pages (from-to) | 2628-2635 |
Number of pages | 8 |
Journal | Applied Optics |
Volume | 50 |
Issue number | 17 |
DOIs | |
Publication status | Published - 10 Jun 2011 |