TY - JOUR
T1 - Investigation on magnetorheological elastomers based on natural rubber
AU - Chen, Lin
AU - Gong, Xing Long
AU - Jiang, Wan Quan
AU - Yao, Jing Jing
AU - Deng, Hua Xia
AU - Li, Wei Hua
PY - 2007/4
Y1 - 2007/4
N2 - Magnetorheological Elastomers (MR Elastomers or MREs) are a kind of novel smart material, whose mechanical, electrical, magnetic properties are controllable under applied magnetic fields. They have attracted increasing attentions and broad application prospects. But conventional MREs are limited to wide applications because their MR effects and mechanical performances are not high enough. This paper aims to optimize the fabrication method and to fabricate good natural rubber based MREs with high modulus by investigating the influences of a variety of fabrication conditions on the MREs performances, such as matrix type, external magnetic flux density, and temperature, plasticizer and iron particles. Among these factors, the content of iron particles plays a most important contribution in shear modulus. When the iron particle weight fraction is 80% and the external magnetic flux density is 1 T, the field-induced increment of shear modulus reaches 3.6 MPa, and the relative MR effect is 133%. If the iron weight fraction increases to 90%, the field-induced increment of shear modulus is 4.5 MPa. This result has exceeded the best report in the literatures researching the MREs on the same kind of matrix. The dynamic performances of MREs were also experimentally characterized by using a modified Dynamic Mechanical Analyzer (DMA) system. The effects of strain amplitude and driving frequency on viscoelastic properties of MREs were analyzed.
AB - Magnetorheological Elastomers (MR Elastomers or MREs) are a kind of novel smart material, whose mechanical, electrical, magnetic properties are controllable under applied magnetic fields. They have attracted increasing attentions and broad application prospects. But conventional MREs are limited to wide applications because their MR effects and mechanical performances are not high enough. This paper aims to optimize the fabrication method and to fabricate good natural rubber based MREs with high modulus by investigating the influences of a variety of fabrication conditions on the MREs performances, such as matrix type, external magnetic flux density, and temperature, plasticizer and iron particles. Among these factors, the content of iron particles plays a most important contribution in shear modulus. When the iron particle weight fraction is 80% and the external magnetic flux density is 1 T, the field-induced increment of shear modulus reaches 3.6 MPa, and the relative MR effect is 133%. If the iron weight fraction increases to 90%, the field-induced increment of shear modulus is 4.5 MPa. This result has exceeded the best report in the literatures researching the MREs on the same kind of matrix. The dynamic performances of MREs were also experimentally characterized by using a modified Dynamic Mechanical Analyzer (DMA) system. The effects of strain amplitude and driving frequency on viscoelastic properties of MREs were analyzed.
UR - https://www.scopus.com/pages/publications/34547298105
U2 - 10.1007/s10853-006-0975-x
DO - 10.1007/s10853-006-0975-x
M3 - Article
SN - 0022-2461
VL - 42
SP - 5483
EP - 5489
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 14
ER -