TY - JOUR
T1 - Innovations and advances in enzymatic deconstruction of biomass and their sustainability analysis
T2 - A review
AU - Singh, Saurabh
AU - Morya, Raj
AU - Jaiswal, Durgesh Kumar
AU - Keerthana, S.
AU - Kim, Sang Hyoun
AU - Manimekalai, R.
AU - Prudêncio de Araujo Pereira, Arthur
AU - Verma, Jay Prakash
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2024/1
Y1 - 2024/1
N2 - Increasing population and continuously growing food demand has led to an overwhelming production of agro waste. Further the improper management of agro waste and stubble burning leads to harmful emissions (especially GHG emissions) into the atmosphere. The conversion of waste into biofuels is a highly lucrative option considering the utilization of waste and its use as an alternative to fossil fuel. However, it needs to tackle the obstacles in proper transportation of waste to the site of conversion or biorefineries, technical issues in the pre-treatment, high moisture content in the feedstock, compositional variations in the feedstock, enzymatic efficiency of the saccharifying enzymes, and the various other steps used in the conversion of biomass from raw material to end product. And when all these factors are optimized, the cost-effectiveness and eco-friendliness of the processes and the product have to be considered. This review sheds light upon the deconstruction of lignocellulosic biomass for conversion into biofuels in biorefineries with a major emphasis on bioethanol. This review describes the innovations and advances made to increase the cost-effectiveness and environmental friendliness of alternative fuels such as bioethanol, highlighting recent developments in pretreatment methods, enzymatic saccharification as well as their sustainability analysis. In recent past, advanced methods such as CRISPR-Cas gene editing and artificial intelligence have emerged as powerful tools for microbial modification in biofuel production. The recent advancements and achievements in the field, including the gene editing of microbial strains with enhanced biofuel production capabilities which would revolutionize the industry are highlighted.
AB - Increasing population and continuously growing food demand has led to an overwhelming production of agro waste. Further the improper management of agro waste and stubble burning leads to harmful emissions (especially GHG emissions) into the atmosphere. The conversion of waste into biofuels is a highly lucrative option considering the utilization of waste and its use as an alternative to fossil fuel. However, it needs to tackle the obstacles in proper transportation of waste to the site of conversion or biorefineries, technical issues in the pre-treatment, high moisture content in the feedstock, compositional variations in the feedstock, enzymatic efficiency of the saccharifying enzymes, and the various other steps used in the conversion of biomass from raw material to end product. And when all these factors are optimized, the cost-effectiveness and eco-friendliness of the processes and the product have to be considered. This review sheds light upon the deconstruction of lignocellulosic biomass for conversion into biofuels in biorefineries with a major emphasis on bioethanol. This review describes the innovations and advances made to increase the cost-effectiveness and environmental friendliness of alternative fuels such as bioethanol, highlighting recent developments in pretreatment methods, enzymatic saccharification as well as their sustainability analysis. In recent past, advanced methods such as CRISPR-Cas gene editing and artificial intelligence have emerged as powerful tools for microbial modification in biofuel production. The recent advancements and achievements in the field, including the gene editing of microbial strains with enhanced biofuel production capabilities which would revolutionize the industry are highlighted.
KW - Biofuel production
KW - Biorefineries
KW - CRISPR Cas9
KW - Lignocellulosic biomass
KW - Sustainability
UR - http://www.scopus.com/inward/record.url?scp=85175468860&partnerID=8YFLogxK
U2 - 10.1016/j.rser.2023.113958
DO - 10.1016/j.rser.2023.113958
M3 - Review article
AN - SCOPUS:85175468860
SN - 1364-0321
VL - 189
JO - Renewable and Sustainable Energy Reviews
JF - Renewable and Sustainable Energy Reviews
IS - A
M1 - 113958
ER -