Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice

Anna A. Shvedova, Alexandr A. Kapralov, Wei Hong Feng, Elena R. Kisin, Ashley R. Murray, Robert R. Mercer, Claudette M. St. Croix, Megan A. Lang, Simon C. Watkins, Nagarjun V. Konduru, Brett L. Allen, Jennifer Conroy, Gregg P. Kotchey, Bashir M. Mohamed, Aidan D. Meade, Yuri Volkov, Alexander Star, Bengt Fadeel, Valerian E. Kagan

Research output: Contribution to journalArticlepeer-review

Abstract

Advancement of biomedical applications of carbonaceous nanomaterials is hampered by their biopersistence and pro-inflammatory action in vivo. Here, we used myeloperoxidase knockout B6.129X1-MPO (MPO k/o) mice and showed that oxidation and clearance of single walled carbon nanotubes (SWCNT) from the lungs of these animals after pharyngeal aspiration was markedly less effective whereas the inflammatory response was more robust than in wild-type C57Bl/6 mice. Our results provide direct evidence for the participation of MPO - one of the key-orchestrators of inflammatory response - in the in vivo pulmonary oxidative biodegradation of SWCNT and suggest new ways to control the biopersistence of nanomaterials through genetic or pharmacological manipulations.

Original languageEnglish
Article numbere30923
JournalPLoS ONE
Volume7
Issue number3
DOIs
Publication statusPublished - 30 Mar 2012

Fingerprint

Dive into the research topics of 'Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice'. Together they form a unique fingerprint.

Cite this