TY - JOUR
T1 - High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce
AU - Patange, Apurva
AU - Boehm, D.
AU - Ziuzina, Dana
AU - Cullen, P. J.
AU - Gilmore, Brendan
AU - Bourke, Paula
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/3/16
Y1 - 2019/3/16
N2 - Atmospheric cold plasma (ACP) offers great potential for decontamination of food borne pathogens. This study examined the antimicrobial efficacy of ACP against a range of pathogens of concern to fresh produce comparing planktonic cultures, monoculture biofilms (Escherichia coli, Salmonella enterica, Listeria monocytogenes, Pseudomonas fluorescens) and mixed culture biofilms (Listeria monocytogenes and Pseudomonas fluorescens). Biotic and abiotic surfaces commonly occurring in the fresh food industry were investigated. Microorganisms showed varying susceptibility to ACP treatment depending on target and process factors. Bacterial biofilm populations treated with high voltage (80 kV) ACP were reduced significantly (p < 0.05) in both mono- and mixed species biofilms after 60 s of treatment and yielded non-detectable levels after extending treatment time to 120 s. However, an extended time was required to reduce the challenge mixed culture biofilm of L. monocytogenes and P. fluorescens inoculated on lettuce, which was dependent on biofilm formation conditions and substrate. Contained treatment for 120 s reduced L. monocytogenes and P. fluorescens inoculated as mixed cultures on lettuce (p < 0.05) by 2.2 and 4.2 Log 10 CFU/ml respectively. When biofilms were grown at 4 °C on lettuce, there was an increased resistance to ACP treatment by comparison with biofilm grown at temperature abuse conditions of 15 °C. Similarly, L. monocytogenes and P. fluorescens exposed to cold stress (4 °C) for 1 h demonstrated increased tolerance to ACP treatment compared to non-stressed cells. These finding demonstrates that bacterial form, mono versus mixed challenges as well as environmental stress conditions play an important role in ACP inactivation efficacy.
AB - Atmospheric cold plasma (ACP) offers great potential for decontamination of food borne pathogens. This study examined the antimicrobial efficacy of ACP against a range of pathogens of concern to fresh produce comparing planktonic cultures, monoculture biofilms (Escherichia coli, Salmonella enterica, Listeria monocytogenes, Pseudomonas fluorescens) and mixed culture biofilms (Listeria monocytogenes and Pseudomonas fluorescens). Biotic and abiotic surfaces commonly occurring in the fresh food industry were investigated. Microorganisms showed varying susceptibility to ACP treatment depending on target and process factors. Bacterial biofilm populations treated with high voltage (80 kV) ACP were reduced significantly (p < 0.05) in both mono- and mixed species biofilms after 60 s of treatment and yielded non-detectable levels after extending treatment time to 120 s. However, an extended time was required to reduce the challenge mixed culture biofilm of L. monocytogenes and P. fluorescens inoculated on lettuce, which was dependent on biofilm formation conditions and substrate. Contained treatment for 120 s reduced L. monocytogenes and P. fluorescens inoculated as mixed cultures on lettuce (p < 0.05) by 2.2 and 4.2 Log 10 CFU/ml respectively. When biofilms were grown at 4 °C on lettuce, there was an increased resistance to ACP treatment by comparison with biofilm grown at temperature abuse conditions of 15 °C. Similarly, L. monocytogenes and P. fluorescens exposed to cold stress (4 °C) for 1 h demonstrated increased tolerance to ACP treatment compared to non-stressed cells. These finding demonstrates that bacterial form, mono versus mixed challenges as well as environmental stress conditions play an important role in ACP inactivation efficacy.
KW - Acid and cold stress
KW - Atmospheric cold plasma
KW - Foodborne pathogens
KW - Lettuce
KW - Mono/mixed culture biofilms
KW - Spoilage bacteria
UR - http://www.scopus.com/inward/record.url?scp=85060755873&partnerID=8YFLogxK
U2 - 10.1016/j.ijfoodmicro.2019.01.005
DO - 10.1016/j.ijfoodmicro.2019.01.005
M3 - Article
SN - 0168-1605
VL - 293
SP - 137
EP - 145
JO - International Journal of Food Microbiology
JF - International Journal of Food Microbiology
ER -