High sensitivity temperature sensor based on a polymer filled hollow core optical fibre interferometer

Rahul Kumar, Wai Pang Ng, Yong Qing Fu, Jinhui Yuan, Chongxiu Yu, Gerald Farrell, Yuliya Semenova, Qiang Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A high-sensitivity temperature sensor based on a singlemode-multimode-polymer filled hollow core fibre-multimode-singlemode (SMHMS) fibre structure is proposed. This sensor was made from a short section of hollow core fibre filled with a high thermo-optic coefficient (TOC) polymer with a refractive index close to that of the fibre cladding, fusion spliced between two singlemode-multimode (SM) fibre structures. This sensor effectively improves the temperature sensitivity by over 200 times by comparison to a conventional singlemode-multimode-singlemode (SMS) fibre structure. In this report, we experimentally demonstrate that the proposed sensor provides a high temperature sensitivity of 2.16 nm/°C.

Original languageEnglish
Title of host publication25th International Conference on Optical Fiber Sensors
EditorsLibo Yuan, Youngjoo Chung, Wei Jin, Byoungho Lee, John Canning, Kentaro Nakamura
PublisherSPIE
ISBN (Electronic)9781510610910
DOIs
Publication statusPublished - 2017
Event25th International Conference on Optical Fiber Sensors, OFS 2017 - Jeju, Korea, Republic of
Duration: 24 Apr 201728 Apr 2017

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10323
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference25th International Conference on Optical Fiber Sensors, OFS 2017
Country/TerritoryKorea, Republic of
CityJeju
Period24/04/1728/04/17

Keywords

  • Hollow core fibre
  • SMS fibre structure
  • Temperature sensor

Fingerprint

Dive into the research topics of 'High sensitivity temperature sensor based on a polymer filled hollow core optical fibre interferometer'. Together they form a unique fingerprint.

Cite this