TY - JOUR
T1 - Green synthesized of ag/ag2o nanoparticles using aqueous leaves extracts of phoenix dactylifera l. And their azo dye photodegradation
AU - Laouini, Salah Eddine
AU - Bouafia, Abderrhmane
AU - Soldatov, Alexander V.
AU - Algarni, Hamed
AU - Tedjani, Mohammed Laid
AU - Ali, Gomaa A.M.
AU - Barhoum, Ahmed
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/7
Y1 - 2021/7
N2 - In this study, silver/silver oxide nanoparticles (Ag/Ag2O NPs) were successfully biosynthesized using Phoenix dactylifera L. aqueous leaves extract. The effect of different plant extract/precursor contractions (volume ratio, v/v%) on Ag/Ag2O NP formation, their optical properties, and photocatalytic activity towards azo dye degradation, i.e., Congo red (CR) and methylene blue (MB), were investigated. X-ray diffraction confirmed the crystalline nature of Ag/Ag2O NPs with a crystallite size range from 28 to 39 nm. Scanning electron microscope images showed that the Ag/Ag2O NPs have an oval and spherical shape. UV–vis spectroscopy showed that Ag/Ag2O NPs have a direct bandgap of 2.07–2.86 eV and an indirect bandgap of 1.60–1.76 eV. Fourier transform infrared analysis suggests that the synthesized Ag/Ag2O NPs might be stabilized through the interactions of –OH and C=O groups in the carbohydrates, flavonoids, tannins, and phenolic acids present in Phoenix dactylifera L. Interestingly, the prepared Ag/Ag2O NPs showed high catalytic degradation activity for CR dye. The photocatalytic degradation of the azo dye was monitored spectrophotometrically in a wavelength range of 250–900 nm, and a high decolorization efficiency (84.50%) was obtained after 50 min of reaction. As a result, the use of Phoenix dactylifera L. aqueous leaves extract offers a cost-effective and eco-friendly method.
AB - In this study, silver/silver oxide nanoparticles (Ag/Ag2O NPs) were successfully biosynthesized using Phoenix dactylifera L. aqueous leaves extract. The effect of different plant extract/precursor contractions (volume ratio, v/v%) on Ag/Ag2O NP formation, their optical properties, and photocatalytic activity towards azo dye degradation, i.e., Congo red (CR) and methylene blue (MB), were investigated. X-ray diffraction confirmed the crystalline nature of Ag/Ag2O NPs with a crystallite size range from 28 to 39 nm. Scanning electron microscope images showed that the Ag/Ag2O NPs have an oval and spherical shape. UV–vis spectroscopy showed that Ag/Ag2O NPs have a direct bandgap of 2.07–2.86 eV and an indirect bandgap of 1.60–1.76 eV. Fourier transform infrared analysis suggests that the synthesized Ag/Ag2O NPs might be stabilized through the interactions of –OH and C=O groups in the carbohydrates, flavonoids, tannins, and phenolic acids present in Phoenix dactylifera L. Interestingly, the prepared Ag/Ag2O NPs showed high catalytic degradation activity for CR dye. The photocatalytic degradation of the azo dye was monitored spectrophotometrically in a wavelength range of 250–900 nm, and a high decolorization efficiency (84.50%) was obtained after 50 min of reaction. As a result, the use of Phoenix dactylifera L. aqueous leaves extract offers a cost-effective and eco-friendly method.
KW - Catalytic activity
KW - Dye degradation
KW - Phoenix dactylifera L
KW - Photosynthesis
KW - Silver/silver oxide nanoparticles
UR - https://www.scopus.com/pages/publications/85109296053
U2 - 10.3390/membranes11070468
DO - 10.3390/membranes11070468
M3 - Article
AN - SCOPUS:85109296053
SN - 2077-0375
VL - 11
JO - Membranes
JF - Membranes
IS - 7
M1 - 468
ER -