TY - JOUR
T1 - Gold nanoprisms as a hybrid in vivo cancer theranostic platform for in situ photoacoustic imaging, angiography, and localized hyperthermia
AU - Bao, Chenchen
AU - Conde, João
AU - Pan, Fei
AU - Li, Chao
AU - Zhang, Chunlei
AU - Tian, Furong
AU - Liang, Shujing
AU - de la Fuente, Jesus M.
AU - Cui, Daxiang
N1 - Publisher Copyright:
© 2016, Tsinghua University Press and Springer-Verlag Berlin Heidelberg.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - The development of high-resolution nanosized photoacoustic contrast agents is an exciting yet challenging technological advance. Herein, antibody (breast cancer-associated antigen 1 (Brcaa1) monoclonal antibody)- and peptide (RGD)-functionalized gold nanoprisms (AuNprs) were used as a combinatorial methodology for in situ photoacoustic imaging, angiography, and localized hyperthermia using orthotopic and subcutaneous murine gastric carcinoma models. RGD-conjugated PEGylated AuNprs are available for tumor angiography, and Brcaa1 monoclonal antibody-conjugated PEGylated AuNprs are used for targeting and for in situ imaging of gastric carcinoma in orthotopic tumor models. In situ photoacoustic imaging allowed for anatomical and functional imaging at the tumor site. In vivo tumor angiography imaging showed enhancement of the photoacoustic signal in a time-dependent manner. Furthermore, photoacoustic imaging demonstrated that tumor vessels were clearly damaged after localized hyperthermia. This is the first proof-of-concept using two AuNprs probes as highly sensitive contrasts and therapeutic agents for in situ tumor detection and inhibition. These smart antibody/peptide AuNprs can be used as an efficient nanotheranostic platform for in vivo tumor detection with high sensitivity, as well as for tumor targeting therapy, which, with a single-dose injection, results in tumor size reduction and increases mice survival after localized hyperthermia treatment. [Figure not available: see fulltext.]
AB - The development of high-resolution nanosized photoacoustic contrast agents is an exciting yet challenging technological advance. Herein, antibody (breast cancer-associated antigen 1 (Brcaa1) monoclonal antibody)- and peptide (RGD)-functionalized gold nanoprisms (AuNprs) were used as a combinatorial methodology for in situ photoacoustic imaging, angiography, and localized hyperthermia using orthotopic and subcutaneous murine gastric carcinoma models. RGD-conjugated PEGylated AuNprs are available for tumor angiography, and Brcaa1 monoclonal antibody-conjugated PEGylated AuNprs are used for targeting and for in situ imaging of gastric carcinoma in orthotopic tumor models. In situ photoacoustic imaging allowed for anatomical and functional imaging at the tumor site. In vivo tumor angiography imaging showed enhancement of the photoacoustic signal in a time-dependent manner. Furthermore, photoacoustic imaging demonstrated that tumor vessels were clearly damaged after localized hyperthermia. This is the first proof-of-concept using two AuNprs probes as highly sensitive contrasts and therapeutic agents for in situ tumor detection and inhibition. These smart antibody/peptide AuNprs can be used as an efficient nanotheranostic platform for in vivo tumor detection with high sensitivity, as well as for tumor targeting therapy, which, with a single-dose injection, results in tumor size reduction and increases mice survival after localized hyperthermia treatment. [Figure not available: see fulltext.]
KW - gold nanoprisms
KW - in situ gastric cancer
KW - photoacoustic imaging
KW - photothermal therapy
UR - https://www.scopus.com/pages/publications/84959104225
U2 - 10.1007/s12274-016-0996-y
DO - 10.1007/s12274-016-0996-y
M3 - Article
AN - SCOPUS:84959104225
SN - 1998-0124
VL - 9
SP - 1043
EP - 1056
JO - Nano Research
JF - Nano Research
IS - 4
ER -