TY - JOUR
T1 - Genetic Background of Antimicrobial Resistance in Multiantimicrobial-Resistant Escherichia coli Isolates from Feces of Healthy Broiler Chickens in Tunisia
AU - Abbassi, Mohamed Salah
AU - Kilani, Hajer
AU - Abid, Islem
AU - Sáenz, Yolanda
AU - Hynds, Paul
AU - Lengliz, Sana
AU - Ben Chehida, Noureddine
AU - Boutiba-Ben Boubaker, Ilhem
N1 - Publisher Copyright:
© 2021 Mohamed Salah Abbassi et al.
PY - 2021
Y1 - 2021
N2 - Multiantimicrobial-resistant Escherichia coli isolates are a global human health problem causing increasing morbidity and mortality. Genes encoding antimicrobial resistance are mainly harbored on mobile genetic elements (MGEs) such as transposons and plasmids as well as integrons, which enhance their rapid spread. The aim of this study was to characterize 83 multiantimicrobial-resistant E. coli isolates recovered from healthy broiler chickens. Among 78 tetracycline-resistant isolates, the tetA, tetB, and tetC genes were detected in 59 (75.6%), 14 (17.9%), and one (1.2%) isolates, respectively. The sul1, sul2, and sul3 genes were detected 31 (46.2%), 16 (23.8%), and 6 (8.9%) isolates, respectively, among 67 sulfonamide-resistant isolates. The PCR-based replicon typing method showed plasmids in 29 isolates, IncFIB (19), IncI1-Iγ (17), IncF (14), IncK (14), IncFIC (10), IncP (8), IncY (3), IncHI2 (1), and IncX (1). The class 1 and 2 integrons were detected in 57 and 2 isolates, respectively; one isolate harbored both integrons. Seven and one gene cassette arrays were identified in class 1 and class 2 integrons, respectively. Our findings show that multiantimicrobial-resistant E. coli isolates from chickens serve as reservoirs of highly diverse and abundant tet and sul genes and plasmid replicons. Such isolates and MGEs pose a potential health threat to the public and animal farming.
AB - Multiantimicrobial-resistant Escherichia coli isolates are a global human health problem causing increasing morbidity and mortality. Genes encoding antimicrobial resistance are mainly harbored on mobile genetic elements (MGEs) such as transposons and plasmids as well as integrons, which enhance their rapid spread. The aim of this study was to characterize 83 multiantimicrobial-resistant E. coli isolates recovered from healthy broiler chickens. Among 78 tetracycline-resistant isolates, the tetA, tetB, and tetC genes were detected in 59 (75.6%), 14 (17.9%), and one (1.2%) isolates, respectively. The sul1, sul2, and sul3 genes were detected 31 (46.2%), 16 (23.8%), and 6 (8.9%) isolates, respectively, among 67 sulfonamide-resistant isolates. The PCR-based replicon typing method showed plasmids in 29 isolates, IncFIB (19), IncI1-Iγ (17), IncF (14), IncK (14), IncFIC (10), IncP (8), IncY (3), IncHI2 (1), and IncX (1). The class 1 and 2 integrons were detected in 57 and 2 isolates, respectively; one isolate harbored both integrons. Seven and one gene cassette arrays were identified in class 1 and class 2 integrons, respectively. Our findings show that multiantimicrobial-resistant E. coli isolates from chickens serve as reservoirs of highly diverse and abundant tet and sul genes and plasmid replicons. Such isolates and MGEs pose a potential health threat to the public and animal farming.
UR - http://www.scopus.com/inward/record.url?scp=85117374626&partnerID=8YFLogxK
U2 - 10.1155/2021/1269849
DO - 10.1155/2021/1269849
M3 - Article
C2 - 34631876
AN - SCOPUS:85117374626
SN - 2314-6133
VL - 2021
JO - BioMed Research International
JF - BioMed Research International
M1 - 1269849
ER -