TY - JOUR
T1 - Extraction of protein from four different seaweeds using three different physical pre-treatment strategies
AU - O' Connor, Jack
AU - Meaney, Steve
AU - Williams, Gwilym A.
AU - Hayes, Maria
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Seaweeds are a rich source of protein and can contain up to 47% on the dry weight basis. It is challenging to extract proteins from the raw biomass of seaweed due to resilient cell-wall complexes. Four species of macroalgae were used in this study-two brown, Fucus vesiculosus and Alaria esculenta, and two red, Palmaria palmata and Chondrus crispus. Three treatments were applied individually to the macroalgal species: (I) high-pressure processing (HPP); (II) laboratory autoclave processing and (III) a classical sonication and salting out method. The protein, ash and lipid contents of the resulting extracts were estimated. Yields of protein recovered ranged from 3.2% for Fucus vesiculosus pre-treated with high pressure processing to 28.9% protein recovered for Chondrus crispus treated with the classical method. The yields of protein recovered using the classical, HPP and autoclave pre-treatments applied to Fucus vesiculosus were 35.1, 23.7% and 24.3%, respectively; yields from Alaria esculenta were 18.2%, 15.0% and 17.1% respectively; yields from Palmaria palmata were 12.5%, 14.9% and 21.5% respectively, and finally, yields from Chondrus crispus were 35.2%, 16.1% and 21.9%, respectively. These results demonstrate that while macroalgal proteins may be extracted using either physical or enzymatic methods, the specific extraction procedure should be tailored to individual species.
AB - Seaweeds are a rich source of protein and can contain up to 47% on the dry weight basis. It is challenging to extract proteins from the raw biomass of seaweed due to resilient cell-wall complexes. Four species of macroalgae were used in this study-two brown, Fucus vesiculosus and Alaria esculenta, and two red, Palmaria palmata and Chondrus crispus. Three treatments were applied individually to the macroalgal species: (I) high-pressure processing (HPP); (II) laboratory autoclave processing and (III) a classical sonication and salting out method. The protein, ash and lipid contents of the resulting extracts were estimated. Yields of protein recovered ranged from 3.2% for Fucus vesiculosus pre-treated with high pressure processing to 28.9% protein recovered for Chondrus crispus treated with the classical method. The yields of protein recovered using the classical, HPP and autoclave pre-treatments applied to Fucus vesiculosus were 35.1, 23.7% and 24.3%, respectively; yields from Alaria esculenta were 18.2%, 15.0% and 17.1% respectively; yields from Palmaria palmata were 12.5%, 14.9% and 21.5% respectively, and finally, yields from Chondrus crispus were 35.2%, 16.1% and 21.9%, respectively. These results demonstrate that while macroalgal proteins may be extracted using either physical or enzymatic methods, the specific extraction procedure should be tailored to individual species.
KW - Autoclave
KW - High pressure processing
KW - Proteins
KW - Seaweeds
KW - Solubility
KW - Total and free amino acids
KW - Traditional protein extraction
UR - https://www.scopus.com/pages/publications/85083848429
U2 - 10.3390/molecules25082005
DO - 10.3390/molecules25082005
M3 - Article
C2 - 32344706
AN - SCOPUS:85083848429
SN - 1420-3049
VL - 25
JO - Molecules
JF - Molecules
IS - 8
M1 - 2005
ER -