Exploring zero-shot and joint training cross-lingual strategies for aspect-based sentiment analysis based on contextualized multilingual language models

Dang Van Thin, Hung Quoc Ngo, Duong Ngoc Hao, Ngan Luu-Thuy Nguyen

Research output: Contribution to journalArticlepeer-review

Abstract

Aspect-based sentiment analysis (ABSA) has attracted many researchers' attention in recent years. However, the lack of benchmark datasets for specific languages is a common challenge because of the prohibitive cost of manual annotation. The zero-shot cross-lingual strategy can be applied to solve this gap in research. Moreover, previous works mainly focus on improving the performance of supervised ABSA with pre-trained languages. Therefore, there are few to no systematic comparisons of the benefits of multilingual models in zero-shot and joint training cross-lingual for the ABSA task. In this paper, we focus on the zero-shot and joint training cross-lingual transfer task for the ABSA. We fine-tune the latest pre-trained multilingual language models on the source language, and then it is directly predicted in the target language. For the joint learning scenario, the models are trained on the combination of multiple source languages. Our experimental results show that (1) fine-tuning multilingual models achieve promising performances in the zero-shot cross-lingual scenario; (2) fine-tuning models on the combination training data of multiple source languages outperforms monolingual data in the joint training scenario. Furthermore, the experimental results indicated that choosing other languages instead of English as the source language can give promising results in the low-resource languages scenario.

Original languageEnglish
Pages (from-to)121-143
Number of pages23
JournalJournal of Information and Telecommunication
Volume7
Issue number2
DOIs
Publication statusPublished - 1 Jan 2023

Keywords

  • Aspect-based sentiment analysis
  • joint learning
  • multilingual models
  • zero-shot cross-lingual

Fingerprint

Dive into the research topics of 'Exploring zero-shot and joint training cross-lingual strategies for aspect-based sentiment analysis based on contextualized multilingual language models'. Together they form a unique fingerprint.

Cite this