Abstract
We study the nonlinear equations of motion for equatorial wave–current interactions in the physically realistic setting of azimuthal two-dimensional inviscid flows with piecewise constant vorticity in a two-layer fluid with a flat bed and a free surface. We derive a Hamiltonian formulation for the nonlinear governing equations that is adequate for structure-preserving perturbations, at the linear and at the nonlinear level. Linear theory reveals some important features of the dynamics, highlighting differences between the short- and long-wave regimes. The fact that ocean energy is concentrated in the long-wave propagation modes motivates the pursuit of in-depth nonlinear analysis in the long-wave regime. In particular, specific weakly nonlinear long-wave regimes capture the wave-breaking phenomenon while others are structure-enhancing since therein the dynamics is described by an integrable Hamiltonian system whose solitary-wave solutions are solitons.
Original language | English |
---|---|
Pages (from-to) | 1-48 |
Number of pages | 48 |
Journal | Communications in Mathematical Physics |
Volume | 370 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Aug 2019 |