TY - JOUR
T1 - Enhanced the structure and optical properties for ZnO/PVP nanofibers fabricated via electrospinning technique
AU - Turky, Ali Omar
AU - Barhoum, Ahmed
AU - MohamedRashad, Mohamed
AU - Bechlany, Mikhael
N1 - Publisher Copyright:
© 2017, Springer Science+Business Media, LLC.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Zinc oxide/polyvinylpyrrolidone (ZnO/PVP) nanocomposite fibers with enhanced structural, morphological and optical properties were purposefully tailored using electrospinning technique. Meanwhile, ZnO nanoparticles (NPs),with particle size of ~50 nm, were synthesized using a co-precipitation method. The nanocomposite fibers were prepared by an electrospun solution of PVP containing ZnO NPs of 2, 4, 6 and 8 wt%. Evidently, the morphological, thermal and optical properties of the ZnO/PVP nanocomposite fibers were enhanced by dispersing ZnO NPs into PVP fibers. Typically, controlling the ZnO NPs content and their dispersibility (0–8 wt%) into PVP fibers result in improved the thermal stability (an increase of onset decomposition temperature by ~120 °C above pure PVP fibers) as well as the UV–Vis protection (reduction in UV transmission by 70%) and the photoluminescence properties (a sharp UV emission around 380 nm) Overall, based on the enhanced properties, the PVP/ZnO nanocomposite fibers can be considered a promise material in optoelectronic sensors and UV photoconductor.
AB - Zinc oxide/polyvinylpyrrolidone (ZnO/PVP) nanocomposite fibers with enhanced structural, morphological and optical properties were purposefully tailored using electrospinning technique. Meanwhile, ZnO nanoparticles (NPs),with particle size of ~50 nm, were synthesized using a co-precipitation method. The nanocomposite fibers were prepared by an electrospun solution of PVP containing ZnO NPs of 2, 4, 6 and 8 wt%. Evidently, the morphological, thermal and optical properties of the ZnO/PVP nanocomposite fibers were enhanced by dispersing ZnO NPs into PVP fibers. Typically, controlling the ZnO NPs content and their dispersibility (0–8 wt%) into PVP fibers result in improved the thermal stability (an increase of onset decomposition temperature by ~120 °C above pure PVP fibers) as well as the UV–Vis protection (reduction in UV transmission by 70%) and the photoluminescence properties (a sharp UV emission around 380 nm) Overall, based on the enhanced properties, the PVP/ZnO nanocomposite fibers can be considered a promise material in optoelectronic sensors and UV photoconductor.
UR - https://www.scopus.com/pages/publications/85028754059
U2 - 10.1007/s10854-017-7688-6
DO - 10.1007/s10854-017-7688-6
M3 - Article
AN - SCOPUS:85028754059
SN - 0957-4522
VL - 28
SP - 17526
EP - 17532
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 23
ER -