TY - JOUR
T1 - Electric field standing wave effects in FT-IR transflection spectra of biological tissue sections
T2 - Simulated models of experimental variability
AU - Wrobel, Tomasz P.
AU - Wajnchold, Barbara
AU - Byrne, Hugh J.
AU - Baranska, Malgorzata
N1 - Funding Information:
This work was supported by the European Union under the European Regional Development Fund (Grant coordinated by JCET-UJ, POIG.01.01.02-00-069/09). T.P.W. acknowledges the Marian Smoluchowski Krakow Research Consortium: “Matter-Energy- Future” (granted the KNOW status for the 2012–2017 by the Ministry of Science and Higher Education). Calculations were performed at the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) University of Warsaw within the computational grant No G53-12.
PY - 2013
Y1 - 2013
N2 - The so-called electric field standing wave effect (EFSW) has recently been demonstrated to significantly distort FT-IR spectra acquired in a transflection mode, both experimentally and in simulated models, bringing into question the appropriateness of the technique for sample characterization, particularly in the field of spectroscopy of biological materials. The predicted effects are most notable in the regime where the sample thickness is comparable to the source wavelength. In this work, the model is extended to sample thicknesses more representative of biological tissue sections and to include typical experimental factors which are demonstrated to reduce the predicted effects. These include integration over the range of incidence angles, varying degrees of coherence of the source and inhomogeneities in sample thickness. The latter was found to have the strongest effect on the spectral distortions and, with inhomogeneities as low as 10% of the sample thickness, the predicted distortions due to the standing wave effect are almost completely averaged out. As the majority of samples for biospectroscopy are prepared by cutting a cross section of tissue resulting in a high degree of thickness variation, this finding suggests that the standing wave effect should be a minor distortion in FT-IR spectroscopy of tissues. The study has important implications not only in optimization of protocols for future studies, but notably for the validity of the extensive studies which have been performed to date on tissue samples in the transflection geometry.
AB - The so-called electric field standing wave effect (EFSW) has recently been demonstrated to significantly distort FT-IR spectra acquired in a transflection mode, both experimentally and in simulated models, bringing into question the appropriateness of the technique for sample characterization, particularly in the field of spectroscopy of biological materials. The predicted effects are most notable in the regime where the sample thickness is comparable to the source wavelength. In this work, the model is extended to sample thicknesses more representative of biological tissue sections and to include typical experimental factors which are demonstrated to reduce the predicted effects. These include integration over the range of incidence angles, varying degrees of coherence of the source and inhomogeneities in sample thickness. The latter was found to have the strongest effect on the spectral distortions and, with inhomogeneities as low as 10% of the sample thickness, the predicted distortions due to the standing wave effect are almost completely averaged out. As the majority of samples for biospectroscopy are prepared by cutting a cross section of tissue resulting in a high degree of thickness variation, this finding suggests that the standing wave effect should be a minor distortion in FT-IR spectroscopy of tissues. The study has important implications not only in optimization of protocols for future studies, but notably for the validity of the extensive studies which have been performed to date on tissue samples in the transflection geometry.
KW - Biospectroscopy
KW - Electric field standing wave effect
KW - Fourier transform infrared spectroscopy
KW - Sample inhomogeneity
KW - Simulation
KW - Tissues
KW - Transflection
UR - http://www.scopus.com/inward/record.url?scp=84887674830&partnerID=8YFLogxK
U2 - 10.1016/j.vibspec.2013.09.008
DO - 10.1016/j.vibspec.2013.09.008
M3 - Article
AN - SCOPUS:84887674830
SN - 0924-2031
VL - 69
SP - 84
EP - 92
JO - Vibrational Spectroscopy
JF - Vibrational Spectroscopy
ER -