TY - JOUR
T1 - Eco-friendly synthesis of silver nanoparticles using Senna alata bark extract and its antimicrobial mechanism through enhancement of bacterial membrane degradation
AU - Ontong, Julalak C.
AU - Paosen, Supakit
AU - Shankar, Shiv
AU - Voravuthikunchai, Supayang P.
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/10
Y1 - 2019/10
N2 - Biological synthesis of nanomaterials has been increasingly gaining popularity due to its eco-friendly nature and cost-effectiveness. This study aimed to synthesize silver nanoparticles (AgNPs) using Senna alata bark extract as reducing and capping agents, and to evaluate their antimicrobial activities. AgNPs was characterized using UV-vis spectrophotometry, transmission electron microscopy, and Fourier transform infrared spectroscopy (FTIR). The formation of AgNPs was monitored by recording the surface plasmon resonance peak observed at 425 nm. High-resolution TEM images elucidated the formation of spherical AgNPs with an average diameter of 10–30 nm. Energy dispersive spectroscopy (EDS) revealed the presence of silver. The functional groups of biomolecules present in the extract and their interaction with AgNPs were identified through FTIR analysis. Biosynthesized AgNPs displayed antimicrobial activity against different microorganisms, including Gram-positive and Gram-negative bacteria as well as fungi, as indicated by the diameter of inhibition zones between 11.37 and 14.87 mm. Minimum inhibitory concentration of AgNPs for the tested microorganisms was in the range from 31.25 to 125 μg/mL. Potassium leakage is a primary indicator of membrane damage which is a significant mode of action of AgNPs against the tested microorganisms. The amount of potassium ions leaked from the microbial cells after 4 h contact time ranged between 0.97 and 3.05 ppm. Morphological changes were observed in all AgNPs-treated microorganisms. The green synthesized AgNPs with high antimicrobial activity has potential to be used in food packaging and biomedical research areas.
AB - Biological synthesis of nanomaterials has been increasingly gaining popularity due to its eco-friendly nature and cost-effectiveness. This study aimed to synthesize silver nanoparticles (AgNPs) using Senna alata bark extract as reducing and capping agents, and to evaluate their antimicrobial activities. AgNPs was characterized using UV-vis spectrophotometry, transmission electron microscopy, and Fourier transform infrared spectroscopy (FTIR). The formation of AgNPs was monitored by recording the surface plasmon resonance peak observed at 425 nm. High-resolution TEM images elucidated the formation of spherical AgNPs with an average diameter of 10–30 nm. Energy dispersive spectroscopy (EDS) revealed the presence of silver. The functional groups of biomolecules present in the extract and their interaction with AgNPs were identified through FTIR analysis. Biosynthesized AgNPs displayed antimicrobial activity against different microorganisms, including Gram-positive and Gram-negative bacteria as well as fungi, as indicated by the diameter of inhibition zones between 11.37 and 14.87 mm. Minimum inhibitory concentration of AgNPs for the tested microorganisms was in the range from 31.25 to 125 μg/mL. Potassium leakage is a primary indicator of membrane damage which is a significant mode of action of AgNPs against the tested microorganisms. The amount of potassium ions leaked from the microbial cells after 4 h contact time ranged between 0.97 and 3.05 ppm. Morphological changes were observed in all AgNPs-treated microorganisms. The green synthesized AgNPs with high antimicrobial activity has potential to be used in food packaging and biomedical research areas.
KW - Antimicrobial activity
KW - Green synthesis
KW - Potassium ion leakage
KW - Senna alata extract
KW - Silver nanoparticles
UR - https://www.scopus.com/pages/publications/85071075931
U2 - 10.1016/j.mimet.2019.105692
DO - 10.1016/j.mimet.2019.105692
M3 - Article
C2 - 31437555
AN - SCOPUS:85071075931
SN - 0167-7012
VL - 165
JO - Journal of Microbiological Methods
JF - Journal of Microbiological Methods
M1 - 105692
ER -