Dynamic estimation of rater reliability in subjective tasks using multi-armed bandits

Alexey Tarasov, Sarah Jane Delany, Brian Mac Namee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Many application areas that use supervised machine learning make use of multiple raters to collect target ratings for training data. Usage of multiple raters, however, inevitably introduces the risk that a proportion of them will be unreliable. The presence of unreliable raters can prolong the rating process, make it more expensive and lead to inaccurate ratings. The dominant, 'static' approach of solving this problem in state-of-the-art research is to estimate the rater reliability and to calculate the target ratings when all ratings have been gathered. However, doing it dynamically while raters rate training data can make the acquisition of ratings faster and cheaper compared to static techniques. We propose to cast the problem of the dynamic estimation of rater reliability as a multi-armed bandit problem. Experiments show that the usage of multi-armed bandits for this problem is worthwhile, providing that each rater can rate any asset when asked. The purpose of this paper is to outline the directions of future research in this area.

Original languageEnglish
Title of host publicationProceedings - 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing, SocialCom/PASSAT 2012
Pages979-980
Number of pages2
DOIs
Publication statusPublished - 2012
Event2012 ASE/IEEE International Conference on Social Computing, SocialCom 2012 and the 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust, PASSAT 2012 - Amsterdam, Netherlands
Duration: 3 Sep 20125 Sep 2012

Publication series

NameProceedings - 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing, SocialCom/PASSAT 2012

Conference

Conference2012 ASE/IEEE International Conference on Social Computing, SocialCom 2012 and the 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust, PASSAT 2012
Country/TerritoryNetherlands
CityAmsterdam
Period3/09/125/09/12

Keywords

  • crowdsourcing
  • human computation
  • learning from multiple sources
  • multi-armed bandits
  • supervised machine learning
  • training data

Fingerprint

Dive into the research topics of 'Dynamic estimation of rater reliability in subjective tasks using multi-armed bandits'. Together they form a unique fingerprint.

Cite this