Double quantum dot photoluminescence mediated by incoherent reversible energy transport

S. Yu Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, K. Berwick

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We present a theoretical study of the stationary photoluminescence of two, direct-gap, semiconductor nanocrystals, taking into account electronic excitation energy-transfer processes due to electrostatic interaction. The results obtained here allow for the incoherent reversible energy transport that occurs when the intraband relaxation rate in a quantum dot acceptor is comparable to, or less than, the energy-transfer rate. We investigate the secondary emission of two different electronic level schemes that can be realized experimentally, obtain analytical expressions for the luminescence differential cross section, and perform an analysis of its spectrum. It is shown that when excitation is not in resonance with the levels involved in energy transfer, the energy transfer is more efficient.

    Original languageEnglish
    Article number245303
    JournalPhysical Review B - Condensed Matter and Materials Physics
    Volume81
    Issue number24
    DOIs
    Publication statusPublished - 2 Jun 2010

    Fingerprint

    Dive into the research topics of 'Double quantum dot photoluminescence mediated by incoherent reversible energy transport'. Together they form a unique fingerprint.

    Cite this