COVID-19 prediction using LSTM algorithm: GCC case study

Kareem Kamal A. Ghany, Hossam M. Zawbaa, Heba M. Sabri

Research output: Contribution to journalArticlepeer-review

Abstract

Coronavirus-19 (COVID-19) is the black swan of 2020. Still, the human response to restrain the virus is also creating massive ripples through different systems, such as health, economy, education, and tourism. This paper focuses on research and applying Artificial Intelligence (AI) algorithms to predict COVID-19 propagation using the available time-series data and study the effect of the quality of life, the number of tests performed, and the awareness of citizens on the virus in the Gulf Cooperation Council (GCC) countries at the Gulf area. So we focused on cases in the Kingdom of Saudi Arabia (KSA), United Arab of Emirates (UAE), Kuwait, Bahrain, Oman, and Qatar. For this aim, we accessed the time-series real-datasets collected from Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). The timeline of our data is from January 22, 2020 to January 25, 2021. We have implemented the proposed model based on Long Short-Term Memory (LSTM) with ten hidden units (neurons) to predict COVID-19 confirmed and death cases. From the experimental results, we confirmed that KSA and Qatar would take the most extended period to recover from the COVID-19 virus, and the situation will be controllable in the second half of March 2021 in UAE, Kuwait, Oman, and Bahrain. Also, we calculated the root mean square error (RMSE) between the actual and predicted values of each country for confirmed and death cases, and we found that the best values for both confirmed and death cases are 320.79 and 1.84, respectively, and both are related to Bahrain. While the worst values are 1768.35 and 21.78, respectively, and both are related to KSA. On the other hand, we also calculated the mean absolute relative errors (MARE) between the actual and predicted values of each country for confirmed and death cases, and we found that the best values for both confirmed and deaths cases are 37.76 and 0.30, and these are related to Kuwait and Qatar respectively. While the worst values are 71.45 and 1.33, respectively, and both are related to KSA.

Original languageEnglish
Article number100566
Number of pages9
JournalInformatics in Medicine Unlocked
Volume23
DOIs
Publication statusPublished - Jan 2021
Externally publishedYes

Keywords

  • Artificial intelligence
  • COVID-19
  • Deep learning
  • LSTM
  • Prediction

Fingerprint

Dive into the research topics of 'COVID-19 prediction using LSTM algorithm: GCC case study'. Together they form a unique fingerprint.

Cite this