Constructing a fine dispersion and chemical interface based on an electrostatic self-assembly and aqueous phase compound in GO/SiO2/SBR composites to achieve high-wear resistance in eco-friendly green tires

Rui Zhang, Jiaye Li, Stephen Jerrams, Shui Hu, Li Liu, Shipeng Wen, Liqun Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

The hazard to the ecosystem caused by rubber microparticles generated from tire abrasion has been a constant concern. Therefore, to protect this ecosystem, the development of a tire tread with high abrasion resistance is especially significant. Herein, γ-aminopropyltriethoxysilane (APTES) was used to modify graphene oxide (GO) and silica (SiO2) to obtain GO and SiO2 with positive charges (NG and NS). Furthermore, NG and NS were electrostatically self-assembled by using maleic anhydride (MAH) hydrolysis, thereby obtaining composite particles (NG-NS) with “bridged structures”. Also, the NG-NS/styrene butadiene rubber (SBR) compounds possessing fine dispersion of NG-NS were prepared by the aqueous compounding method. During the crosslinking process, the vinyl groups in NG-NS reacted with the vinyl groups of the SBR molecule chains, thus forming strong chemical interfacial interactions between the NG-NS and rubber macromolecules. Compared with an SiO2/SBR composite, the 300 % modulus, tensile strength, abrasion resistance of the NG-NS/SBR composite were improved by 125 %, 122 %, 83.3 %, respectively. Compared with a GO/SiO2/SBR composite, heat build-up in the NG-NS/SBR was decreased by 8.2 °C.

Original languageEnglish
Article number139113
JournalChemical Engineering Journal
Volume452
DOIs
Publication statusPublished - 15 Jan 2023

Keywords

  • Abrasion resistance
  • Dispersion
  • Graphene oxide
  • Interface
  • Rubber

Fingerprint

Dive into the research topics of 'Constructing a fine dispersion and chemical interface based on an electrostatic self-assembly and aqueous phase compound in GO/SiO2/SBR composites to achieve high-wear resistance in eco-friendly green tires'. Together they form a unique fingerprint.

Cite this