TY - JOUR
T1 - Computational development of selective nNOS inhibitors
T2 - Binding modes and pharmacokinetic considerations
AU - Curtin, Adam M.
AU - Kinsella, Gemma K.
AU - Stephens, John C.
N1 - Publisher Copyright:
© 2015 Bentham Science Publishers.
PY - 2015/1/1
Y1 - 2015/1/1
N2 - Neuronal nitric oxide synthase (nNOS) produces the key signalling mediator nitric oxide, (NO). This gaseous, free radical molecule modulates a vast array of biological processes, from vascular pressure to immune responses and neurological signalling cascades. Overproduction of NO has been implicated in conditions including Alzheimer's disease, Parkinson's disease and schizophrenia. Inhibition of nNOS therefore offers a potential therapeutic approach for treatment of these conditions. This endeavour is made more complex by the fact that there are two other isoforms of nitric oxide synthase (NOS), endothelial NOS (eNOS) and inducible NOS (iNOS). The selectivity of nNOS inhibitors is therefore a key concern for therapeutic development. This review explores recent advances in the field of selective nNOS inhibition. A particular focus is placed on computational approaches towards the rational design of selective nNOS ligands with improved pharmacokinetic properties. These ligands have been targeted at four key binding sites of the nNOS enzyme - the tetrahydrobiopterin, calmodulin, nicotinamide adenine dinucleotide phosphate (NADPH) and arginine binding sites. The binding sites, and the compounds used to inhibit them, will be discussed in turn, along with the computational methods which have been employed in the field of nNOS inhibition.
AB - Neuronal nitric oxide synthase (nNOS) produces the key signalling mediator nitric oxide, (NO). This gaseous, free radical molecule modulates a vast array of biological processes, from vascular pressure to immune responses and neurological signalling cascades. Overproduction of NO has been implicated in conditions including Alzheimer's disease, Parkinson's disease and schizophrenia. Inhibition of nNOS therefore offers a potential therapeutic approach for treatment of these conditions. This endeavour is made more complex by the fact that there are two other isoforms of nitric oxide synthase (NOS), endothelial NOS (eNOS) and inducible NOS (iNOS). The selectivity of nNOS inhibitors is therefore a key concern for therapeutic development. This review explores recent advances in the field of selective nNOS inhibition. A particular focus is placed on computational approaches towards the rational design of selective nNOS ligands with improved pharmacokinetic properties. These ligands have been targeted at four key binding sites of the nNOS enzyme - the tetrahydrobiopterin, calmodulin, nicotinamide adenine dinucleotide phosphate (NADPH) and arginine binding sites. The binding sites, and the compounds used to inhibit them, will be discussed in turn, along with the computational methods which have been employed in the field of nNOS inhibition.
KW - Binding pockets
KW - In silico
KW - Neuronal nitric oxide synthase (nNOS)
KW - Selective inhibition
UR - http://www.scopus.com/inward/record.url?scp=84939790276&partnerID=8YFLogxK
U2 - 10.2174/0929867322666150429112600
DO - 10.2174/0929867322666150429112600
M3 - Article
C2 - 25921643
AN - SCOPUS:84939790276
SN - 0929-8673
VL - 22
SP - 2558
EP - 2579
JO - Current Medicinal Chemistry
JF - Current Medicinal Chemistry
IS - 21
ER -