Combining BERT with Contextual Linguistic Features for Identification of Propaganda Spans in News Articles

Arjumand Younus, M. Atif Qureshi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recent endeavours at detection of propaganda in news articles treat this as a fine-grained problem of detecting it within fragments; and hence, transformer based embeddings perform decently in such detection. We build our propaganda detection framework on top of a transformer model simultaneously enriching it with contextual linguistic information of surrounding part-of-speech tags and LIWC categories the word itself belongs to. The evaluation outcomes being encouraging indicate a huge potential for this line of reasoning in natural language processing of news text.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
EditorsXintao Wu, Chris Jermaine, Li Xiong, Xiaohua Tony Hu, Olivera Kotevska, Siyuan Lu, Weijia Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, Jeff Saltz
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5864-5866
Number of pages3
ISBN (Electronic)9781728162515
DOIs
Publication statusPublished - 10 Dec 2020
Event8th IEEE International Conference on Big Data, Big Data 2020 - Virtual, Atlanta, United States
Duration: 10 Dec 202013 Dec 2020

Publication series

NameProceedings - 2020 IEEE International Conference on Big Data, Big Data 2020

Conference

Conference8th IEEE International Conference on Big Data, Big Data 2020
Country/TerritoryUnited States
CityVirtual, Atlanta
Period10/12/2013/12/20

Fingerprint

Dive into the research topics of 'Combining BERT with Contextual Linguistic Features for Identification of Propaganda Spans in News Articles'. Together they form a unique fingerprint.

Cite this