TY - JOUR
T1 - Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma
AU - Liao, Xinyu
AU - Cullen, P. J.
AU - Liu, Donghong
AU - Muhammad, Aliyu Idris
AU - Chen, Shiguo
AU - Ye, Xingqian
AU - Wang, Jun
AU - Ding, Tian
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/12/15
Y1 - 2018/12/15
N2 - The increase in antibiotic resistance has become a global challenge to public health. In this study, an atmospheric cold plasma (ACP) system was applied for combating methicillin-resistant Staphylococcus aureus (MRSA) and its methicillin resistance gene (mecA) during food wastewater treatment. The plate count and flow cytometry methods were employed to estimate the damage in MRSA induced by plasma treatment. A quantitative real-time PCR (qPCR) method was used to assess the plasma-induced degradation of the mecA genes. The inactivation of MRSA and degradation of extracellular (e-) and intracellular (i-)mecA genes were investigated in phosphate buffered solution as a function of plasma exposure. A relatively low plasma influence of 0.12 kJ/cm2 accounted for 5-log MRSA and 1.4-log e-mecA genes reduction, while only around 0.19-log degradation for i-mecA genes. As the plasma intensity was accumulated to 0.35 kJ/cm2, the reduction of e- and i-mecA genes was increased to 2.6 and 0.8 logs, respectively. The degradation of i-mecA genes was much slower than that of e-mecA genes due to the protective effects of the outer envelopes or intracellular components against plasma. The matrix effect of wastewater effluents shielded both antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) from plasma disinfection, which led to a lower degradation efficacy. Our results could support the development and optimization of plasma-based wastewater treatment.
AB - The increase in antibiotic resistance has become a global challenge to public health. In this study, an atmospheric cold plasma (ACP) system was applied for combating methicillin-resistant Staphylococcus aureus (MRSA) and its methicillin resistance gene (mecA) during food wastewater treatment. The plate count and flow cytometry methods were employed to estimate the damage in MRSA induced by plasma treatment. A quantitative real-time PCR (qPCR) method was used to assess the plasma-induced degradation of the mecA genes. The inactivation of MRSA and degradation of extracellular (e-) and intracellular (i-)mecA genes were investigated in phosphate buffered solution as a function of plasma exposure. A relatively low plasma influence of 0.12 kJ/cm2 accounted for 5-log MRSA and 1.4-log e-mecA genes reduction, while only around 0.19-log degradation for i-mecA genes. As the plasma intensity was accumulated to 0.35 kJ/cm2, the reduction of e- and i-mecA genes was increased to 2.6 and 0.8 logs, respectively. The degradation of i-mecA genes was much slower than that of e-mecA genes due to the protective effects of the outer envelopes or intracellular components against plasma. The matrix effect of wastewater effluents shielded both antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) from plasma disinfection, which led to a lower degradation efficacy. Our results could support the development and optimization of plasma-based wastewater treatment.
KW - Atmospheric cold plasma
KW - Food wastewater effluent
KW - Methicillin resistance genes
KW - Methicillin-resistant Staphylococcus aureus
UR - http://www.scopus.com/inward/record.url?scp=85050107346&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2018.07.190
DO - 10.1016/j.scitotenv.2018.07.190
M3 - Article
SN - 0048-9697
VL - 645
SP - 1287
EP - 1295
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -