Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications

Research output: Contribution to journalReview articlepeer-review

Abstract

Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications.

Original languageEnglish
Pages (from-to)948-963
Number of pages16
JournalMaterials Science and Engineering C
Volume68
DOIs
Publication statusPublished - 1 Nov 2016

Keywords

  • Biocompatible
  • Biodegradation
  • Coating
  • Corrosion
  • Mg alloys
  • Orthopaedic implants

Fingerprint

Dive into the research topics of 'Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications'. Together they form a unique fingerprint.

Cite this