Abstract
We extend the well-known and widely used exponential random graph model (ERGM) by including nodal random effects to compensate for heterogeneity in the nodes of a network. The Bayesian framework for ERGMs proposed by Caimo and Friel (2011) yields the basis of our modelling algorithm. A central question in network models is the question of model selection and following the Bayesian paradigm we focus on estimating Bayes factors. To do so we develop an approximate but feasible calculation of the Bayes factor which allows one to pursue model selection. Three data examples and a small simulation study illustrate our mixed model approach and the corresponding model selection.
Original language | English |
---|---|
Pages (from-to) | 11-28 |
Number of pages | 18 |
Journal | Social Networks |
Volume | 46 |
DOIs | |
Publication status | Published - 1 Jul 2016 |
Keywords
- Bayesian inference
- Exponential random graph models
- Network analysis
- Random effects