@inproceedings{5d75f1bcc2f443fab495648e6cff3b0f,
title = "Automatic flood detection in SentineI-2 images using deep convolutional neural networks",
abstract = "The early and accurate detection of floods from satellite imagery can aid rescue planning and assessment of geophysical damage. Automatic identification of water from satellite images has historically relied on hand-crafted functions, but these often do not provide the accuracy and robustness needed for accurate and early flood detection. To try to overcome these limitations we investigate a tiered methodology combining water index like features with a deep convolutional neural network based solution to flood identification against the MediaEval 2019 flood dataset. Our method builds on existing deep neural network methods, and in particular the VGG16 network. Specifically, we explored different water indexing techniques and proposed a water index function with the use of Green/SWIR and Blue/NIR bands with VGG16. Our experiment shows that our approach outperformed all other water index technique when combined with VGG16 network in order to detect flood in images.",
keywords = "Flood detection, Neural networks, Remote sensing, Sentinel-2",
author = "Pallavi Jain and Bianca Schoen-Phelan and Robert Ross",
note = "Publisher Copyright: {\textcopyright} 2020 ACM.; 35th Annual ACM Symposium on Applied Computing, SAC 2020 ; Conference date: 30-03-2020 Through 03-04-2020",
year = "2020",
month = mar,
day = "30",
doi = "10.1145/3341105.3374023",
language = "English",
series = "Proceedings of the ACM Symposium on Applied Computing",
publisher = "Association for Computing Machinery",
pages = "617--623",
booktitle = "35th Annual ACM Symposium on Applied Computing, SAC 2020",
address = "United States",
}