TY - JOUR
T1 - Antimicrobial action of 1,10-phenanthroline-based compounds on carbapenemase-producing Acinetobacter baumannii clinical strains
T2 - efficacy against planktonic- and biofilm-growing cells
AU - Ventura, Roberta F.
AU - Galdino, Anna Clara M.
AU - Viganor, Livia
AU - Schuenck, Ricardo P.
AU - Devereux, Michael
AU - McCann, Malachy
AU - Santos, André L.S.
AU - Nunes, Ana Paula F.
N1 - Publisher Copyright:
© 2020, Sociedade Brasileira de Microbiologia.
PY - 2020/12
Y1 - 2020/12
N2 - Therapeutic options are limited for patients infected with Acinetobacter baumannii due to its multidrug-resistance profile. So, the search for new antimicrobials against this gram-negative bacterial pathogen has become a worldwide priority. The present study aimed to evaluate the effects of 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 (Ag-phendione) and [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione) on 26 carbapenemase-producing A. baumannii strains. The susceptibility to carbapenems was performed by detecting the metallo-beta-lactamase (MBL) genes by PCR and by determining the MIC. Also, disk diffusion method was applied to evaluate the susceptibility to other antimicrobial classes. The test compounds were evaluated on both planktonic- and biofilm-growing bacterial cells. The results revealed that all A. baumannii strains had the intrinsic blaoxa-51 gene, and at least one of the blaoxa-23 or blaoxa-24 genes. The geometric mean MIC and minimum bactericidal concentration (MBC) values, respectively, were as follows: Cu-phendione (1.56 and 2.30 μM), Ag-phendione (2.48 and 3.63 μM), phendione (9.44 and 9.70 μM), and phen (70.46 and 184.28 μM). The test compounds (at 0.5 × MIC) affected the biofilm formation and disrupted the mature biofilm, in a typically dose-dependent manner, reducing biomass and viability parameters. Collectively, silver and copper-phendione derivatives presented potent antimicrobial action against planktonic- and biofilm-forming cells of carbapenemase-producing A. baumannii.
AB - Therapeutic options are limited for patients infected with Acinetobacter baumannii due to its multidrug-resistance profile. So, the search for new antimicrobials against this gram-negative bacterial pathogen has become a worldwide priority. The present study aimed to evaluate the effects of 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 (Ag-phendione) and [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione) on 26 carbapenemase-producing A. baumannii strains. The susceptibility to carbapenems was performed by detecting the metallo-beta-lactamase (MBL) genes by PCR and by determining the MIC. Also, disk diffusion method was applied to evaluate the susceptibility to other antimicrobial classes. The test compounds were evaluated on both planktonic- and biofilm-growing bacterial cells. The results revealed that all A. baumannii strains had the intrinsic blaoxa-51 gene, and at least one of the blaoxa-23 or blaoxa-24 genes. The geometric mean MIC and minimum bactericidal concentration (MBC) values, respectively, were as follows: Cu-phendione (1.56 and 2.30 μM), Ag-phendione (2.48 and 3.63 μM), phendione (9.44 and 9.70 μM), and phen (70.46 and 184.28 μM). The test compounds (at 0.5 × MIC) affected the biofilm formation and disrupted the mature biofilm, in a typically dose-dependent manner, reducing biomass and viability parameters. Collectively, silver and copper-phendione derivatives presented potent antimicrobial action against planktonic- and biofilm-forming cells of carbapenemase-producing A. baumannii.
KW - 1,10-Phenanthroline-5,6-dione
KW - Acinetobacter baumannii
KW - Anti-biofilm action
KW - Antimicrobial activity
KW - Carbapenemase
KW - Metal-based compounds
UR - http://www.scopus.com/inward/record.url?scp=85088858943&partnerID=8YFLogxK
U2 - 10.1007/s42770-020-00351-9
DO - 10.1007/s42770-020-00351-9
M3 - Article
SN - 1517-8382
VL - 51
SP - 1703
EP - 1710
JO - Brazilian Journal of Microbiology
JF - Brazilian Journal of Microbiology
IS - 4
ER -