An On-Device Deep Learning Framework to Encourage the Recycling of Waste

Oluwatobi Ekundayo, Lisa Murphy, Pramod Pathak, Paul Stynes

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Only 4% of household waste generated in Africa is recycled. Current research uses machine learning models in cloud-based solutions to classify waste. However, in countries with limited internet access, there is a need to increase user engagement in classifying waste using an on-device approach. Developing a machine learning model for a mobile device with limited size and speed is a challenge. This research proposes an on-device deep learning framework to encourage the recycling of household waste. The proposed framework combines an optimal deep learning image classification model and gamification elements. A combination of multiple waste datasets named WasteNet consisting of 33,520 images is used to train the deep learning image classification model using seven classes of recyclable waste namely e-waste, garbage, glass, metal, organic, paper and plastic. Data augmentation and transfer learning techniques are applied to train five models on a mobile device namely, MobileNetV2, VGG19, DenseNet201, ResNet152V2 and InceptionResNetV2. Results of the five models are presented in this paper based on accuracy, loss, latency and size. This research shows promise for InceptionResNetV2, MobileNetV2 and DenseNet201in encouraging householders to engage in recycling waste using gamification on a mobile device.

Original languageEnglish
Title of host publicationIntelligent Systems and Applications - Proceedings of the 2021 Intelligent Systems Conference, IntelliSys
EditorsKohei Arai
PublisherSpringer Science and Business Media Deutschland GmbH
Pages405-417
Number of pages13
ISBN (Print)9783030821982
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event Intelligent Systems Conference, IntelliSys 2021 - Virtual, Online
Duration: 2 Sep 20213 Sep 2021

Publication series

NameLecture Notes in Networks and Systems
Volume296
ISSN (Print)2367-3370
ISSN (Electronic)2367-3389

Conference

Conference Intelligent Systems Conference, IntelliSys 2021
CityVirtual, Online
Period2/09/213/09/21

Keywords

  • Deep learning
  • Gamification
  • Image classification
  • Quantization
  • Recycling
  • Waste

Fingerprint

Dive into the research topics of 'An On-Device Deep Learning Framework to Encourage the Recycling of Waste'. Together they form a unique fingerprint.

Cite this