TY - GEN
T1 - An Explainable Tool to Support Age-related Macular Degeneration Diagnosis
AU - Martinez-Villasenor, Lourdes
AU - Ponce, Hiram
AU - Martinez-Velasco, Antonieta
AU - Miralles-Pechuan, Luis
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Artificial intelligence and deep learning, in particu-lar, have gained large attention in the ophthalmology community due to the possibility of processing large amounts of data and dig-itized ocular images. Intelligent systems are developed to support the diagnosis and treatment of a number of ophthalmic diseases such as age-related macular degeneration (AMD), glaucoma and retinopathy of prematurity. Hence, explainability is necessary to gain trust and therefore the adoption of these critical decision support systems. Visual explanations have been proposed for AMD diagnosis only when optical coherence tomography (OCT) images are used, but interpretability using other inputs (i.e. data point-based features) for AMD diagnosis is rather limited. In this paper, we propose a practical tool to support AMD diagnosis based on Artificial Hydrocarbon Networks (AHN) with different kinds of input data such as demographic characteristics, features known as risk factors for AMD, and genetic variants obtained from DNA genotyping. The proposed explainer, namely eXplainable Artificial Hydrocarbon Networks (XAHN) is able to get global and local interpretations of the AHN model. An explainability assessment of the XAHN explainer was applied to clinicians for getting feedback from the tool. We consider the XAHN explainer tool will be beneficial to support expert clinicians in AMD diagnosis, especially where input data are not visual.
AB - Artificial intelligence and deep learning, in particu-lar, have gained large attention in the ophthalmology community due to the possibility of processing large amounts of data and dig-itized ocular images. Intelligent systems are developed to support the diagnosis and treatment of a number of ophthalmic diseases such as age-related macular degeneration (AMD), glaucoma and retinopathy of prematurity. Hence, explainability is necessary to gain trust and therefore the adoption of these critical decision support systems. Visual explanations have been proposed for AMD diagnosis only when optical coherence tomography (OCT) images are used, but interpretability using other inputs (i.e. data point-based features) for AMD diagnosis is rather limited. In this paper, we propose a practical tool to support AMD diagnosis based on Artificial Hydrocarbon Networks (AHN) with different kinds of input data such as demographic characteristics, features known as risk factors for AMD, and genetic variants obtained from DNA genotyping. The proposed explainer, namely eXplainable Artificial Hydrocarbon Networks (XAHN) is able to get global and local interpretations of the AHN model. An explainability assessment of the XAHN explainer was applied to clinicians for getting feedback from the tool. We consider the XAHN explainer tool will be beneficial to support expert clinicians in AMD diagnosis, especially where input data are not visual.
KW - age-related macular degeneration
KW - artificial hydrocarbon networks
KW - Explainability
KW - explainable AI
UR - https://www.scopus.com/pages/publications/85140773148
U2 - 10.1109/IJCNN55064.2022.9892895
DO - 10.1109/IJCNN55064.2022.9892895
M3 - Conference contribution
AN - SCOPUS:85140773148
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2022 International Joint Conference on Neural Networks, IJCNN 2022 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 International Joint Conference on Neural Networks, IJCNN 2022
Y2 - 18 July 2022 through 23 July 2022
ER -