TY - GEN
T1 - AFGuide system to support personalized management of atrial fibrillation
AU - Michalowski, Wojtek
AU - Michalowski, Martin
AU - O'Sullivan, Dympna
AU - Wilk, Szymon
AU - Carrier, Marc
N1 - Publisher Copyright:
© 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2017
Y1 - 2017
N2 - Atrial fibrillation (AF), the most common arrhythmia with clinical significance, is a serious public health problem. Yet a number of studies show that current AF management is sub-optimal due to a knowledge gap between primary care physicians and evidence-based treatment recommendations. This gap is caused by a number of barriers such as a lack of knowledge about new therapies, challenges associated with multi- morbidity, or a lack of patient engagement in therapy planning. The decision support tools proposed to address these barriers handle individual barriers but none of them tackle them comprehensively. Responding to this challenge, we propose AFGuide- a clinical decision support system to educate and support primary care physicians in developing evidence- based and optimal AF therapies that take into account multi- morbid conditions and patient preferences. AFGuide relies on artificial intelligence techniques (logical reasoning) and preference modeling techniques, and combines them with mobile computing technologies. In this paper we present the design of the system and discuss its proposed implementation and evaluation.
AB - Atrial fibrillation (AF), the most common arrhythmia with clinical significance, is a serious public health problem. Yet a number of studies show that current AF management is sub-optimal due to a knowledge gap between primary care physicians and evidence-based treatment recommendations. This gap is caused by a number of barriers such as a lack of knowledge about new therapies, challenges associated with multi- morbidity, or a lack of patient engagement in therapy planning. The decision support tools proposed to address these barriers handle individual barriers but none of them tackle them comprehensively. Responding to this challenge, we propose AFGuide- a clinical decision support system to educate and support primary care physicians in developing evidence- based and optimal AF therapies that take into account multi- morbid conditions and patient preferences. AFGuide relies on artificial intelligence techniques (logical reasoning) and preference modeling techniques, and combines them with mobile computing technologies. In this paper we present the design of the system and discuss its proposed implementation and evaluation.
UR - https://www.scopus.com/pages/publications/85046100818
M3 - Conference contribution
AN - SCOPUS:85046100818
T3 - AAAI Workshop - Technical Report
SP - 562
EP - 567
BT - WS-17-01
PB - AI Access Foundation
T2 - 31st AAAI Conference on Artificial Intelligence, AAAI 2017
Y2 - 4 February 2017 through 5 February 2017
ER -