TY - GEN
T1 - A data centre air flow model for predicting computer server inlet temperatures
AU - Lloyd, Raymond
AU - Hayes, Jer
AU - Rebow, Marek
AU - Norton, Brian
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/25
Y1 - 2017/7/25
N2 - Data centres account for approx. 1.3% of the world's electricity consumption, of which up to 50% of that power is dedicated to keeping the actual equipment cool. This represents a huge opportunity to reduce data centre energy consumption by tackling the cooling system operations with a focus on thermal management. This work presents a novel Data Centre Air Flow Model (DCAM) for temperature prediction of server inlet temperatures. The model is a physics-based model under-pinned by turbulent jet theory allowing a reduction in the solution domain size by using only local boundary conditions in front of the servers. Current physics-based modeling approaches require a solution domain of the entire data centre room which is expensive in terms of computation even if a small change occurs in a localized area. By limiting the solution domain and boundary conditions to a local level, the model focuses on the airflow mixing that affects temperatures while also simplifying the related computations. The DCAM model does not have the usual complexities of numerical computations, dependencies on computational grid size, meshing or the need to solve a full domain solution. The input boundary conditions required for the model can be supplied by the Building Management System (BMS), Power Distribution Units (PDU), sensors, or output from other modeling environments that only need updating when significant changes occur. Preliminary results validated on a real world data centre yield an overall prediction error of 1.2° C RMSE. The model can perform in real-time, giving way to applications for real-time monitoring, as input to optimize control of air conditioning units, and can complement sensor networks.
AB - Data centres account for approx. 1.3% of the world's electricity consumption, of which up to 50% of that power is dedicated to keeping the actual equipment cool. This represents a huge opportunity to reduce data centre energy consumption by tackling the cooling system operations with a focus on thermal management. This work presents a novel Data Centre Air Flow Model (DCAM) for temperature prediction of server inlet temperatures. The model is a physics-based model under-pinned by turbulent jet theory allowing a reduction in the solution domain size by using only local boundary conditions in front of the servers. Current physics-based modeling approaches require a solution domain of the entire data centre room which is expensive in terms of computation even if a small change occurs in a localized area. By limiting the solution domain and boundary conditions to a local level, the model focuses on the airflow mixing that affects temperatures while also simplifying the related computations. The DCAM model does not have the usual complexities of numerical computations, dependencies on computational grid size, meshing or the need to solve a full domain solution. The input boundary conditions required for the model can be supplied by the Building Management System (BMS), Power Distribution Units (PDU), sensors, or output from other modeling environments that only need updating when significant changes occur. Preliminary results validated on a real world data centre yield an overall prediction error of 1.2° C RMSE. The model can perform in real-time, giving way to applications for real-time monitoring, as input to optimize control of air conditioning units, and can complement sensor networks.
UR - http://www.scopus.com/inward/record.url?scp=85034449635&partnerID=8YFLogxK
U2 - 10.1109/ITHERM.2017.7992572
DO - 10.1109/ITHERM.2017.7992572
M3 - Conference contribution
AN - SCOPUS:85034449635
T3 - Proceedings of the 16th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2017
SP - 830
EP - 839
BT - Proceedings of the 16th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 16th IEEE InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2017
Y2 - 30 May 2017 through 2 June 2017
ER -