TY - JOUR
T1 - A Core–Shell Au@TiO2 and Multi-Walled Carbon Nanotube-Based Sensor for the Electroanalytical Determination of H2O2 in Human Blood Serum and Saliva
AU - Saeed, Ayman Ali
AU - Abbas, Mohammed Nooredeen
AU - El-Hawary, Waheed Fathi
AU - Issa, Yousry Moustafa
AU - Singh, Baljit
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - A hydrogen peroxide (H2O2) sensor was developed based on core–shell gold@titanium dioxide nanoparticles and multi-walled carbon nanotubes modified glassy carbon electrode (Au@TiO2/MWCNTs/GCE). Core–shell Au@TiO2 material was prepared and characterized using a scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD) and Zeta-potential analyzer. The proposed sensor (Au@TiO2/MWCNTs/GCE) was investigated electrochemically using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The analytical performance of the sensor was evaluated towards H2O2 using differential pulse voltammetry (DPV). The proposed sensor exhibited excellent stability and sensitivity with a linear concentration range from 5 to 200 µM (R2 = 0.9973) and 200 to 6000 µM (R2 = 0.9994), and a limit of detection (LOD) of 1.4 µM achieved under physiological pH conditions. The practicality of the proposed sensor was further tested by measuring H2O2 in human serum and saliva samples. The observed response and recovery results demonstrate its potential for real-world H2O2 monitoring. Additionally, the proposed sensor and detection strategy can offer potential prospects in electrochemical sensors development, indicative oxidative stress monitoring, clinical diagnostics, general cancer biomarker measurements, paper bleaching, etc.
AB - A hydrogen peroxide (H2O2) sensor was developed based on core–shell gold@titanium dioxide nanoparticles and multi-walled carbon nanotubes modified glassy carbon electrode (Au@TiO2/MWCNTs/GCE). Core–shell Au@TiO2 material was prepared and characterized using a scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD) and Zeta-potential analyzer. The proposed sensor (Au@TiO2/MWCNTs/GCE) was investigated electrochemically using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The analytical performance of the sensor was evaluated towards H2O2 using differential pulse voltammetry (DPV). The proposed sensor exhibited excellent stability and sensitivity with a linear concentration range from 5 to 200 µM (R2 = 0.9973) and 200 to 6000 µM (R2 = 0.9994), and a limit of detection (LOD) of 1.4 µM achieved under physiological pH conditions. The practicality of the proposed sensor was further tested by measuring H2O2 in human serum and saliva samples. The observed response and recovery results demonstrate its potential for real-world H2O2 monitoring. Additionally, the proposed sensor and detection strategy can offer potential prospects in electrochemical sensors development, indicative oxidative stress monitoring, clinical diagnostics, general cancer biomarker measurements, paper bleaching, etc.
KW - carbon nanotubes
KW - core–shell
KW - electrochemical sensor
KW - gold nanoparticles
KW - hydrogen peroxide
KW - titanium dioxide
UR - http://www.scopus.com/inward/record.url?scp=85140400035&partnerID=8YFLogxK
U2 - 10.3390/bios12100778
DO - 10.3390/bios12100778
M3 - Article
C2 - 36290916
AN - SCOPUS:85140400035
SN - 2079-6374
VL - 12
JO - Biosensors
JF - Biosensors
IS - 10
M1 - 778
ER -